The Dehn--Sommerville relations and the Catalan matroid
The f-vector of a d-dimensional polytope P stores the number of faces of each dimension. When P is a simplicial polytope the Dehn-Sommerville relations condense the f-vector into the g-vector, which has length \lceil {\frac {d+1}{2}}\rceil . Thus, to determine the f-vector of P, we only need to know...
Gespeichert in:
Veröffentlicht in: | Proceedings of the American Mathematical Society 2017-09, Vol.145 (9), p.4041-4047 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The f-vector of a d-dimensional polytope P stores the number of faces of each dimension. When P is a simplicial polytope the Dehn-Sommerville relations condense the f-vector into the g-vector, which has length \lceil {\frac {d+1}{2}}\rceil . Thus, to determine the f-vector of P, we only need to know approximately half of its entries. This raises the question: Which (\lceil {\frac {d+1}{2}}\rceil )-subsets of the f-vector of a general simplicial polytope are sufficient to determine the whole f-vector? We prove that the answer is given by the bases of the Catalan matroid. |
---|---|
ISSN: | 0002-9939 1088-6826 |
DOI: | 10.1090/proc/13554 |