The Dehn--Sommerville relations and the Catalan matroid

The f-vector of a d-dimensional polytope P stores the number of faces of each dimension. When P is a simplicial polytope the Dehn-Sommerville relations condense the f-vector into the g-vector, which has length \lceil {\frac {d+1}{2}}\rceil . Thus, to determine the f-vector of P, we only need to know...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the American Mathematical Society 2017-09, Vol.145 (9), p.4041-4047
Hauptverfasser: CHAVEZ, ANASTASIA, YAMZON, NICOLE
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The f-vector of a d-dimensional polytope P stores the number of faces of each dimension. When P is a simplicial polytope the Dehn-Sommerville relations condense the f-vector into the g-vector, which has length \lceil {\frac {d+1}{2}}\rceil . Thus, to determine the f-vector of P, we only need to know approximately half of its entries. This raises the question: Which (\lceil {\frac {d+1}{2}}\rceil )-subsets of the f-vector of a general simplicial polytope are sufficient to determine the whole f-vector? We prove that the answer is given by the bases of the Catalan matroid.
ISSN:0002-9939
1088-6826
DOI:10.1090/proc/13554