The number of ramified primes in number fields of small degree
In this paper we investigate the distribution of the number of primes which ramify in number fields of degree d \leq 5. In analogy with the classical Erdős-Kac theorem, we prove for S_d-extensions that the number of such primes is normally distributed with mean and variance \log \log X.
Gespeichert in:
Veröffentlicht in: | Proceedings of the American Mathematical Society 2017-08, Vol.145 (8), p.3201-3210 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper we investigate the distribution of the number of primes which ramify in number fields of degree d \leq 5. In analogy with the classical Erdős-Kac theorem, we prove for S_d-extensions that the number of such primes is normally distributed with mean and variance \log \log X. |
---|---|
ISSN: | 0002-9939 1088-6826 |
DOI: | 10.1090/proc/13467 |