The number of ramified primes in number fields of small degree

In this paper we investigate the distribution of the number of primes which ramify in number fields of degree d \leq 5. In analogy with the classical Erdős-Kac theorem, we prove for S_d-extensions that the number of such primes is normally distributed with mean and variance \log \log X.

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the American Mathematical Society 2017-08, Vol.145 (8), p.3201-3210
Hauptverfasser: OLIVER, ROBERT J. LEMKE, THORNE, FRANK
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper we investigate the distribution of the number of primes which ramify in number fields of degree d \leq 5. In analogy with the classical Erdős-Kac theorem, we prove for S_d-extensions that the number of such primes is normally distributed with mean and variance \log \log X.
ISSN:0002-9939
1088-6826
DOI:10.1090/proc/13467