Bounds for the first several prime character nonresidues
Let \varepsilon > 0. We prove that there are constants m_0=m_0(\varepsilon ) and \kappa =\kappa (\varepsilon ) > 0 for which the following holds: For every integer m > m_0 and every nontrivial Dirichlet character modulo m, there are more than m^{\kappa } primes \ell \le m^{\frac {1}{4\sqrt...
Gespeichert in:
Veröffentlicht in: | Proceedings of the American Mathematical Society 2017-07, Vol.145 (7), p.2815-2826 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let \varepsilon > 0. We prove that there are constants m_0=m_0(\varepsilon ) and \kappa =\kappa (\varepsilon ) > 0 for which the following holds: For every integer m > m_0 and every nontrivial Dirichlet character modulo m, there are more than m^{\kappa } primes \ell \le m^{\frac {1}{4\sqrt {e}}+\varepsilon } with \chi (\ell )\notin \{0,1\}. The proof uses the fundamental lemma of the sieve, Norton's refinement of the Burgess bounds, and a result of Tenenbaum on the distribution of smooth numbers satisfying a coprimality condition. For quadratic characters, we demonstrate a somewhat weaker lower bound on the number of primes \ell \le m^{\frac 14+\epsilon } with \chi (\ell )=1. |
---|---|
ISSN: | 0002-9939 1088-6826 |
DOI: | 10.1090/proc/13432 |