The congruence ax_1x_2\cdots x_k + bx_{k+1}x_{k+2}\cdots x_{2k} \equiv c \pmod p

in a cube \mathcal B with edge length B. For a cube in general position, we show that if p \nmid abc and k \ge 5, then the congruence above has a solution in any cube with edge length B \gg p^{\frac 14 + \frac 1{2(\sqrt {k} +1.95)}+ \epsilon }. Estimates are given for the case p\vert c as well, and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the American Mathematical Society 2017-02, Vol.145 (2), p.467-477
Hauptverfasser: Ayyad, Anwar, Cochrane, Todd
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:in a cube \mathcal B with edge length B. For a cube in general position, we show that if p \nmid abc and k \ge 5, then the congruence above has a solution in any cube with edge length B \gg p^{\frac 14 + \frac 1{2(\sqrt {k} +1.95)}+ \epsilon }. Estimates are given for the case p\vert c as well, and improvements are given for small k. For cubes cornered at the origin, 1 \le x_i \le B for all i, we obtain a solution provided only that B\gg p^{\frac 3{2k} + O\left (\frac k{\log \log p}\right )}. Under the assumption of GRH best possible estimates are given. Boxes with unequal edge lengths are also discussed.]]>
ISSN:0002-9939
1088-6826
DOI:10.1090/proc/13429