Hopf braces and Yang-Baxter operators

This paper introduces Hopf braces, a new algebraic structure related to the Yang-Baxter equation, which include Rump's braces and their non-commutative generalizations as particular cases. Several results of classical braces are still valid in our context. Furthermore, Hopf braces provide the r...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the American Mathematical Society 2017-05, Vol.145 (5), p.1981-1995
Hauptverfasser: ANGIONO, IVÁN, GALINDO, CÉSAR, VENDRAMIN, LEANDRO
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper introduces Hopf braces, a new algebraic structure related to the Yang-Baxter equation, which include Rump's braces and their non-commutative generalizations as particular cases. Several results of classical braces are still valid in our context. Furthermore, Hopf braces provide the right setting for considering left symmetric algebras as Lie-theoretical analogs of braces.
ISSN:0002-9939
1088-6826
DOI:10.1090/proc/13395