Lipschitz slices versus linear slices in Banach spaces

The aim of this note is to study the topology generated by Lipschitz slices in the unit sphere of a Banach space. We prove that the above topology agrees with the weak topology in the unit sphere and, as a consequence, we obtain easy Lipschitz characterizations of classical linear topics in Banach s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the American Mathematical Society 2017-04, Vol.145 (4), p.1699-1708
Hauptverfasser: GUERRERO, JULIO BECERRA, LÓPEZ-PÉREZ, GINÉS, ZOCA, ABRAHAM RUEDA
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The aim of this note is to study the topology generated by Lipschitz slices in the unit sphere of a Banach space. We prove that the above topology agrees with the weak topology in the unit sphere and, as a consequence, we obtain easy Lipschitz characterizations of classical linear topics in Banach spaces as the Daugavet property, Radon-Nikodym property, convex point of continuity property and strong regularity, which shows that the above classical linear properties depend only on the natural uniformity in the Banach space given by the metric and the linear structure.
ISSN:0002-9939
1088-6826
DOI:10.1090/proc/13372