Lipschitz slices versus linear slices in Banach spaces
The aim of this note is to study the topology generated by Lipschitz slices in the unit sphere of a Banach space. We prove that the above topology agrees with the weak topology in the unit sphere and, as a consequence, we obtain easy Lipschitz characterizations of classical linear topics in Banach s...
Gespeichert in:
Veröffentlicht in: | Proceedings of the American Mathematical Society 2017-04, Vol.145 (4), p.1699-1708 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The aim of this note is to study the topology generated by Lipschitz slices in the unit sphere of a Banach space. We prove that the above topology agrees with the weak topology in the unit sphere and, as a consequence, we obtain easy Lipschitz characterizations of classical linear topics in Banach spaces as the Daugavet property, Radon-Nikodym property, convex point of continuity property and strong regularity, which shows that the above classical linear properties depend only on the natural uniformity in the Banach space given by the metric and the linear structure. |
---|---|
ISSN: | 0002-9939 1088-6826 |
DOI: | 10.1090/proc/13372 |