QUANTITATIVE AND QUALITATIVE COHOMOLOGICAL PROPERTIES FOR NON-KÄHLER MANIFOLDS

We introduce a “qualitative property” for Bott-Chern cohomology of complex non-Kähler manifolds, which is motivated in view of the study of the algebraic structure of Bott-Chern cohomology. We prove that such a property characterizes the validity of the ∂ ∂ ¯ -Lemma. This follows from a quantitative...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the American Mathematical Society 2017-01, Vol.145 (1), p.273-285
Hauptverfasser: ANGELLA, DANIELE, TARDINI, NICOLETTA
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We introduce a “qualitative property” for Bott-Chern cohomology of complex non-Kähler manifolds, which is motivated in view of the study of the algebraic structure of Bott-Chern cohomology. We prove that such a property characterizes the validity of the ∂ ∂ ¯ -Lemma. This follows from a quantitative study of Bott-Chern cohomology. In this context, we also prove a new bound on the dimension of the Bott-Chern cohomology in terms of the Hodge numbers. We also give a generalization of this upper bound, with applications to symplectic cohomologies.
ISSN:0002-9939
1088-6826
DOI:10.1090/proc/13209