QUANTITATIVE AND QUALITATIVE COHOMOLOGICAL PROPERTIES FOR NON-KÄHLER MANIFOLDS
We introduce a “qualitative property” for Bott-Chern cohomology of complex non-Kähler manifolds, which is motivated in view of the study of the algebraic structure of Bott-Chern cohomology. We prove that such a property characterizes the validity of the ∂ ∂ ¯ -Lemma. This follows from a quantitative...
Gespeichert in:
Veröffentlicht in: | Proceedings of the American Mathematical Society 2017-01, Vol.145 (1), p.273-285 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We introduce a “qualitative property” for Bott-Chern cohomology of complex non-Kähler manifolds, which is motivated in view of the study of the algebraic structure of Bott-Chern
cohomology. We prove that such a property characterizes the validity of the
∂
∂
¯
-Lemma. This follows from a quantitative
study of Bott-Chern cohomology. In this context, we also prove a new bound on the dimension of the Bott-Chern cohomology in terms of the Hodge numbers. We also give a
generalization of this upper bound, with applications to symplectic cohomologies. |
---|---|
ISSN: | 0002-9939 1088-6826 |
DOI: | 10.1090/proc/13209 |