Lower order perturbation and global analytic vectors for a class of globally analytic hypoelliptic operators

In this work we return to the class of globally analytic hypoelliptic Hörmander’s operators defined on the NN-dimensional torus introduced by Cordaro and Himonas and prove that if PP is any operator in this class, then a perturbation of PP by an analytic pseudodifferential operator with degree small...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the American Mathematical Society 2016-12, Vol.144 (12), p.5159-5170
Hauptverfasser: Braun Rodrigues, N., Chinni, G., Cordaro, P. D., Jahnke, M. R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5170
container_issue 12
container_start_page 5159
container_title Proceedings of the American Mathematical Society
container_volume 144
creator Braun Rodrigues, N.
Chinni, G.
Cordaro, P. D.
Jahnke, M. R.
description In this work we return to the class of globally analytic hypoelliptic Hörmander’s operators defined on the NN-dimensional torus introduced by Cordaro and Himonas and prove that if PP is any operator in this class, then a perturbation of PP by an analytic pseudodifferential operator with degree smaller than the subelliptic index of PP remains globally analytic hypoelliptic. We also study the Gevrey regularity of the Gevrey vectors for such a class and at the end we also show that Cordaro and Himonas’s result can be extended to a similar class of operators now defined in a product of compact Lie group by a compact manifold.
doi_str_mv 10.1090/proc/13178
format Article
fullrecord <record><control><sourceid>jstor_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1090_proc_13178</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>procamermathsoci.144.12.5159</jstor_id><sourcerecordid>procamermathsoci.144.12.5159</sourcerecordid><originalsourceid>FETCH-LOGICAL-a339t-5bf8fa96edd041ba46ccb9b25430e186d511c8a2396f350b2469c766f58242413</originalsourceid><addsrcrecordid>eNp9kM1LxDAQxYMouH5c_Aty8SLUzaRpNjnK4hcseNFzmKaJ2yW7KUlV-t_buovevMzMg997DI-QK2C3wDSbdynaOZSwUEdkBkypQiouj8mMMcYLrUt9Ss5y3owStFjMSFjFL5doTM04O5f6j1Rj38YdxV1D30OsMYwnhqFvLf10to8pUx8TRWoD5kyjP2Bh-APXQxddCG03iTjm4uS7ICceQ3aXh31O3h7uX5dPxerl8Xl5tyqwLHVfVLVXHrV0TcME1CiktbWueSVK5kDJpgKwCnmppS8rVnMhtV1I6SvFBRdQnpObfa5NMefkvOlSu8U0GGBm6slMPZmfnkYY9vAmjz_-khOBW5e22K9ztK0BIQxwU0GlR8_13oPb_F_2N4vVe4s</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Lower order perturbation and global analytic vectors for a class of globally analytic hypoelliptic operators</title><source>Jstor Complete Legacy</source><source>American Mathematical Society Publications</source><source>American Mathematical Society Publications (Freely Accessible)</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>JSTOR Mathematics &amp; Statistics</source><creator>Braun Rodrigues, N. ; Chinni, G. ; Cordaro, P. D. ; Jahnke, M. R.</creator><creatorcontrib>Braun Rodrigues, N. ; Chinni, G. ; Cordaro, P. D. ; Jahnke, M. R.</creatorcontrib><description>In this work we return to the class of globally analytic hypoelliptic Hörmander’s operators defined on the NN-dimensional torus introduced by Cordaro and Himonas and prove that if PP is any operator in this class, then a perturbation of PP by an analytic pseudodifferential operator with degree smaller than the subelliptic index of PP remains globally analytic hypoelliptic. We also study the Gevrey regularity of the Gevrey vectors for such a class and at the end we also show that Cordaro and Himonas’s result can be extended to a similar class of operators now defined in a product of compact Lie group by a compact manifold.</description><identifier>ISSN: 0002-9939</identifier><identifier>EISSN: 1088-6826</identifier><identifier>DOI: 10.1090/proc/13178</identifier><language>eng</language><publisher>Providence, Rhode Island: American Mathematical Society</publisher><subject>B. ANALYSIS ; Research article</subject><ispartof>Proceedings of the American Mathematical Society, 2016-12, Vol.144 (12), p.5159-5170</ispartof><rights>Copyright 2016 American Mathematical Society</rights><rights>2016 American Mathematical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a339t-5bf8fa96edd041ba46ccb9b25430e186d511c8a2396f350b2469c766f58242413</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ams.org/proc/2016-144-12/S0002-9939-2016-13178-X/S0002-9939-2016-13178-X.pdf$$EPDF$$P50$$Gams$$H</linktopdf><linktohtml>$$Uhttps://www.ams.org/proc/2016-144-12/S0002-9939-2016-13178-X/$$EHTML$$P50$$Gams$$H</linktohtml><link.rule.ids>68,69,314,776,780,799,828,23303,23307,27901,27902,57992,57996,58225,58229,77579,77581,77589,77591</link.rule.ids></links><search><creatorcontrib>Braun Rodrigues, N.</creatorcontrib><creatorcontrib>Chinni, G.</creatorcontrib><creatorcontrib>Cordaro, P. D.</creatorcontrib><creatorcontrib>Jahnke, M. R.</creatorcontrib><title>Lower order perturbation and global analytic vectors for a class of globally analytic hypoelliptic operators</title><title>Proceedings of the American Mathematical Society</title><addtitle>Proc. Amer. Math. Soc</addtitle><description>In this work we return to the class of globally analytic hypoelliptic Hörmander’s operators defined on the NN-dimensional torus introduced by Cordaro and Himonas and prove that if PP is any operator in this class, then a perturbation of PP by an analytic pseudodifferential operator with degree smaller than the subelliptic index of PP remains globally analytic hypoelliptic. We also study the Gevrey regularity of the Gevrey vectors for such a class and at the end we also show that Cordaro and Himonas’s result can be extended to a similar class of operators now defined in a product of compact Lie group by a compact manifold.</description><subject>B. ANALYSIS</subject><subject>Research article</subject><issn>0002-9939</issn><issn>1088-6826</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp9kM1LxDAQxYMouH5c_Aty8SLUzaRpNjnK4hcseNFzmKaJ2yW7KUlV-t_buovevMzMg997DI-QK2C3wDSbdynaOZSwUEdkBkypQiouj8mMMcYLrUt9Ss5y3owStFjMSFjFL5doTM04O5f6j1Rj38YdxV1D30OsMYwnhqFvLf10to8pUx8TRWoD5kyjP2Bh-APXQxddCG03iTjm4uS7ICceQ3aXh31O3h7uX5dPxerl8Xl5tyqwLHVfVLVXHrV0TcME1CiktbWueSVK5kDJpgKwCnmppS8rVnMhtV1I6SvFBRdQnpObfa5NMefkvOlSu8U0GGBm6slMPZmfnkYY9vAmjz_-khOBW5e22K9ztK0BIQxwU0GlR8_13oPb_F_2N4vVe4s</recordid><startdate>20161201</startdate><enddate>20161201</enddate><creator>Braun Rodrigues, N.</creator><creator>Chinni, G.</creator><creator>Cordaro, P. D.</creator><creator>Jahnke, M. R.</creator><general>American Mathematical Society</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20161201</creationdate><title>Lower order perturbation and global analytic vectors for a class of globally analytic hypoelliptic operators</title><author>Braun Rodrigues, N. ; Chinni, G. ; Cordaro, P. D. ; Jahnke, M. R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a339t-5bf8fa96edd041ba46ccb9b25430e186d511c8a2396f350b2469c766f58242413</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>B. ANALYSIS</topic><topic>Research article</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Braun Rodrigues, N.</creatorcontrib><creatorcontrib>Chinni, G.</creatorcontrib><creatorcontrib>Cordaro, P. D.</creatorcontrib><creatorcontrib>Jahnke, M. R.</creatorcontrib><collection>CrossRef</collection><jtitle>Proceedings of the American Mathematical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Braun Rodrigues, N.</au><au>Chinni, G.</au><au>Cordaro, P. D.</au><au>Jahnke, M. R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Lower order perturbation and global analytic vectors for a class of globally analytic hypoelliptic operators</atitle><jtitle>Proceedings of the American Mathematical Society</jtitle><stitle>Proc. Amer. Math. Soc</stitle><date>2016-12-01</date><risdate>2016</risdate><volume>144</volume><issue>12</issue><spage>5159</spage><epage>5170</epage><pages>5159-5170</pages><issn>0002-9939</issn><eissn>1088-6826</eissn><abstract>In this work we return to the class of globally analytic hypoelliptic Hörmander’s operators defined on the NN-dimensional torus introduced by Cordaro and Himonas and prove that if PP is any operator in this class, then a perturbation of PP by an analytic pseudodifferential operator with degree smaller than the subelliptic index of PP remains globally analytic hypoelliptic. We also study the Gevrey regularity of the Gevrey vectors for such a class and at the end we also show that Cordaro and Himonas’s result can be extended to a similar class of operators now defined in a product of compact Lie group by a compact manifold.</abstract><cop>Providence, Rhode Island</cop><pub>American Mathematical Society</pub><doi>10.1090/proc/13178</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0002-9939
ispartof Proceedings of the American Mathematical Society, 2016-12, Vol.144 (12), p.5159-5170
issn 0002-9939
1088-6826
language eng
recordid cdi_crossref_primary_10_1090_proc_13178
source Jstor Complete Legacy; American Mathematical Society Publications; American Mathematical Society Publications (Freely Accessible); Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; JSTOR Mathematics & Statistics
subjects B. ANALYSIS
Research article
title Lower order perturbation and global analytic vectors for a class of globally analytic hypoelliptic operators
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T09%3A41%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Lower%20order%20perturbation%20and%20global%20analytic%20vectors%20for%20a%20class%20of%20globally%20analytic%20hypoelliptic%20operators&rft.jtitle=Proceedings%20of%20the%20American%20Mathematical%20Society&rft.au=Braun%20Rodrigues,%20N.&rft.date=2016-12-01&rft.volume=144&rft.issue=12&rft.spage=5159&rft.epage=5170&rft.pages=5159-5170&rft.issn=0002-9939&rft.eissn=1088-6826&rft_id=info:doi/10.1090/proc/13178&rft_dat=%3Cjstor_cross%3Eprocamermathsoci.144.12.5159%3C/jstor_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=procamermathsoci.144.12.5159&rfr_iscdi=true