Lower order perturbation and global analytic vectors for a class of globally analytic hypoelliptic operators
In this work we return to the class of globally analytic hypoelliptic Hörmander’s operators defined on the NN-dimensional torus introduced by Cordaro and Himonas and prove that if PP is any operator in this class, then a perturbation of PP by an analytic pseudodifferential operator with degree small...
Gespeichert in:
Veröffentlicht in: | Proceedings of the American Mathematical Society 2016-12, Vol.144 (12), p.5159-5170 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5170 |
---|---|
container_issue | 12 |
container_start_page | 5159 |
container_title | Proceedings of the American Mathematical Society |
container_volume | 144 |
creator | Braun Rodrigues, N. Chinni, G. Cordaro, P. D. Jahnke, M. R. |
description | In this work we return to the class of globally analytic hypoelliptic Hörmander’s operators defined on the NN-dimensional torus introduced by Cordaro and Himonas and prove that if PP is any operator in this class, then a perturbation of PP by an analytic pseudodifferential operator with degree smaller than the subelliptic index of PP remains globally analytic hypoelliptic. We also study the Gevrey regularity of the Gevrey vectors for such a class and at the end we also show that Cordaro and Himonas’s result can be extended to a similar class of operators now defined in a product of compact Lie group by a compact manifold. |
doi_str_mv | 10.1090/proc/13178 |
format | Article |
fullrecord | <record><control><sourceid>jstor_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1090_proc_13178</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>procamermathsoci.144.12.5159</jstor_id><sourcerecordid>procamermathsoci.144.12.5159</sourcerecordid><originalsourceid>FETCH-LOGICAL-a339t-5bf8fa96edd041ba46ccb9b25430e186d511c8a2396f350b2469c766f58242413</originalsourceid><addsrcrecordid>eNp9kM1LxDAQxYMouH5c_Aty8SLUzaRpNjnK4hcseNFzmKaJ2yW7KUlV-t_buovevMzMg997DI-QK2C3wDSbdynaOZSwUEdkBkypQiouj8mMMcYLrUt9Ss5y3owStFjMSFjFL5doTM04O5f6j1Rj38YdxV1D30OsMYwnhqFvLf10to8pUx8TRWoD5kyjP2Bh-APXQxddCG03iTjm4uS7ICceQ3aXh31O3h7uX5dPxerl8Xl5tyqwLHVfVLVXHrV0TcME1CiktbWueSVK5kDJpgKwCnmppS8rVnMhtV1I6SvFBRdQnpObfa5NMefkvOlSu8U0GGBm6slMPZmfnkYY9vAmjz_-khOBW5e22K9ztK0BIQxwU0GlR8_13oPb_F_2N4vVe4s</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Lower order perturbation and global analytic vectors for a class of globally analytic hypoelliptic operators</title><source>Jstor Complete Legacy</source><source>American Mathematical Society Publications</source><source>American Mathematical Society Publications (Freely Accessible)</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>JSTOR Mathematics & Statistics</source><creator>Braun Rodrigues, N. ; Chinni, G. ; Cordaro, P. D. ; Jahnke, M. R.</creator><creatorcontrib>Braun Rodrigues, N. ; Chinni, G. ; Cordaro, P. D. ; Jahnke, M. R.</creatorcontrib><description>In this work we return to the class of globally analytic hypoelliptic Hörmander’s operators defined on the NN-dimensional torus introduced by Cordaro and Himonas and prove that if PP is any operator in this class, then a perturbation of PP by an analytic pseudodifferential operator with degree smaller than the subelliptic index of PP remains globally analytic hypoelliptic. We also study the Gevrey regularity of the Gevrey vectors for such a class and at the end we also show that Cordaro and Himonas’s result can be extended to a similar class of operators now defined in a product of compact Lie group by a compact manifold.</description><identifier>ISSN: 0002-9939</identifier><identifier>EISSN: 1088-6826</identifier><identifier>DOI: 10.1090/proc/13178</identifier><language>eng</language><publisher>Providence, Rhode Island: American Mathematical Society</publisher><subject>B. ANALYSIS ; Research article</subject><ispartof>Proceedings of the American Mathematical Society, 2016-12, Vol.144 (12), p.5159-5170</ispartof><rights>Copyright 2016 American Mathematical Society</rights><rights>2016 American Mathematical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a339t-5bf8fa96edd041ba46ccb9b25430e186d511c8a2396f350b2469c766f58242413</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ams.org/proc/2016-144-12/S0002-9939-2016-13178-X/S0002-9939-2016-13178-X.pdf$$EPDF$$P50$$Gams$$H</linktopdf><linktohtml>$$Uhttps://www.ams.org/proc/2016-144-12/S0002-9939-2016-13178-X/$$EHTML$$P50$$Gams$$H</linktohtml><link.rule.ids>68,69,314,776,780,799,828,23303,23307,27901,27902,57992,57996,58225,58229,77579,77581,77589,77591</link.rule.ids></links><search><creatorcontrib>Braun Rodrigues, N.</creatorcontrib><creatorcontrib>Chinni, G.</creatorcontrib><creatorcontrib>Cordaro, P. D.</creatorcontrib><creatorcontrib>Jahnke, M. R.</creatorcontrib><title>Lower order perturbation and global analytic vectors for a class of globally analytic hypoelliptic operators</title><title>Proceedings of the American Mathematical Society</title><addtitle>Proc. Amer. Math. Soc</addtitle><description>In this work we return to the class of globally analytic hypoelliptic Hörmander’s operators defined on the NN-dimensional torus introduced by Cordaro and Himonas and prove that if PP is any operator in this class, then a perturbation of PP by an analytic pseudodifferential operator with degree smaller than the subelliptic index of PP remains globally analytic hypoelliptic. We also study the Gevrey regularity of the Gevrey vectors for such a class and at the end we also show that Cordaro and Himonas’s result can be extended to a similar class of operators now defined in a product of compact Lie group by a compact manifold.</description><subject>B. ANALYSIS</subject><subject>Research article</subject><issn>0002-9939</issn><issn>1088-6826</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp9kM1LxDAQxYMouH5c_Aty8SLUzaRpNjnK4hcseNFzmKaJ2yW7KUlV-t_buovevMzMg997DI-QK2C3wDSbdynaOZSwUEdkBkypQiouj8mMMcYLrUt9Ss5y3owStFjMSFjFL5doTM04O5f6j1Rj38YdxV1D30OsMYwnhqFvLf10to8pUx8TRWoD5kyjP2Bh-APXQxddCG03iTjm4uS7ICceQ3aXh31O3h7uX5dPxerl8Xl5tyqwLHVfVLVXHrV0TcME1CiktbWueSVK5kDJpgKwCnmppS8rVnMhtV1I6SvFBRdQnpObfa5NMefkvOlSu8U0GGBm6slMPZmfnkYY9vAmjz_-khOBW5e22K9ztK0BIQxwU0GlR8_13oPb_F_2N4vVe4s</recordid><startdate>20161201</startdate><enddate>20161201</enddate><creator>Braun Rodrigues, N.</creator><creator>Chinni, G.</creator><creator>Cordaro, P. D.</creator><creator>Jahnke, M. R.</creator><general>American Mathematical Society</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20161201</creationdate><title>Lower order perturbation and global analytic vectors for a class of globally analytic hypoelliptic operators</title><author>Braun Rodrigues, N. ; Chinni, G. ; Cordaro, P. D. ; Jahnke, M. R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a339t-5bf8fa96edd041ba46ccb9b25430e186d511c8a2396f350b2469c766f58242413</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>B. ANALYSIS</topic><topic>Research article</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Braun Rodrigues, N.</creatorcontrib><creatorcontrib>Chinni, G.</creatorcontrib><creatorcontrib>Cordaro, P. D.</creatorcontrib><creatorcontrib>Jahnke, M. R.</creatorcontrib><collection>CrossRef</collection><jtitle>Proceedings of the American Mathematical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Braun Rodrigues, N.</au><au>Chinni, G.</au><au>Cordaro, P. D.</au><au>Jahnke, M. R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Lower order perturbation and global analytic vectors for a class of globally analytic hypoelliptic operators</atitle><jtitle>Proceedings of the American Mathematical Society</jtitle><stitle>Proc. Amer. Math. Soc</stitle><date>2016-12-01</date><risdate>2016</risdate><volume>144</volume><issue>12</issue><spage>5159</spage><epage>5170</epage><pages>5159-5170</pages><issn>0002-9939</issn><eissn>1088-6826</eissn><abstract>In this work we return to the class of globally analytic hypoelliptic Hörmander’s operators defined on the NN-dimensional torus introduced by Cordaro and Himonas and prove that if PP is any operator in this class, then a perturbation of PP by an analytic pseudodifferential operator with degree smaller than the subelliptic index of PP remains globally analytic hypoelliptic. We also study the Gevrey regularity of the Gevrey vectors for such a class and at the end we also show that Cordaro and Himonas’s result can be extended to a similar class of operators now defined in a product of compact Lie group by a compact manifold.</abstract><cop>Providence, Rhode Island</cop><pub>American Mathematical Society</pub><doi>10.1090/proc/13178</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0002-9939 |
ispartof | Proceedings of the American Mathematical Society, 2016-12, Vol.144 (12), p.5159-5170 |
issn | 0002-9939 1088-6826 |
language | eng |
recordid | cdi_crossref_primary_10_1090_proc_13178 |
source | Jstor Complete Legacy; American Mathematical Society Publications; American Mathematical Society Publications (Freely Accessible); Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; JSTOR Mathematics & Statistics |
subjects | B. ANALYSIS Research article |
title | Lower order perturbation and global analytic vectors for a class of globally analytic hypoelliptic operators |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T09%3A41%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Lower%20order%20perturbation%20and%20global%20analytic%20vectors%20for%20a%20class%20of%20globally%20analytic%20hypoelliptic%20operators&rft.jtitle=Proceedings%20of%20the%20American%20Mathematical%20Society&rft.au=Braun%20Rodrigues,%20N.&rft.date=2016-12-01&rft.volume=144&rft.issue=12&rft.spage=5159&rft.epage=5170&rft.pages=5159-5170&rft.issn=0002-9939&rft.eissn=1088-6826&rft_id=info:doi/10.1090/proc/13178&rft_dat=%3Cjstor_cross%3Eprocamermathsoci.144.12.5159%3C/jstor_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=procamermathsoci.144.12.5159&rfr_iscdi=true |