Lower order perturbation and global analytic vectors for a class of globally analytic hypoelliptic operators

In this work we return to the class of globally analytic hypoelliptic Hörmander's operators defined on the N-dimensional torus introduced by Cordaro and Himonas and prove that if P is any operator in this class, then a perturbation of P by an analytic pseudodifferential operator with degree sma...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the American Mathematical Society 2016-12, Vol.144 (12), p.5159-5170
Hauptverfasser: RODRIGUES, N. BRAUN, CHINNI, G., CORDARO, P. D., JAHNKE, M. R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this work we return to the class of globally analytic hypoelliptic Hörmander's operators defined on the N-dimensional torus introduced by Cordaro and Himonas and prove that if P is any operator in this class, then a perturbation of P by an analytic pseudodifferential operator with degree smaller than the subelliptic index of P remains globally analytic hypoelliptic. We also study the Gevrey regularity of the Gevrey vectors for such a class and at the end we also show that Cordaro and Himonas's result can be extended to a similar class of operators now defined in a product of compact Lie group by a compact manifold.
ISSN:0002-9939
1088-6826
DOI:10.1090/proc/13178