WEIGHTED ENDPOINT ESTIMATES FOR COMMUTATORS OF CALDERÓN-ZYGMUND OPERATORS
Let δ ∈ (0, 1] and T be a δ-Calderón-Zygmund operator. Let w be in the Muckenhoupt class A1+δ/n(Rn) satisfying ∫ R n w ( x ) 1 + | x | n d x < ∞ . When b ∈ BMO(Rn), it is well known that the commutator [b, T] is not bounded from H1(Rn) to L1(Rn) if b is not a constant function. In this article, t...
Gespeichert in:
Veröffentlicht in: | Proceedings of the American Mathematical Society 2016-12, Vol.144 (12), p.5171-5181 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let δ ∈ (0, 1] and T be a δ-Calderón-Zygmund operator. Let w be in the Muckenhoupt class A1+δ/n(Rn) satisfying
∫
R
n
w
(
x
)
1
+
|
x
|
n
d
x
<
∞
. When b ∈ BMO(Rn), it is well known that the commutator [b, T] is not bounded from H1(Rn) to L1(Rn) if b is not a constant function. In this article, the authors find out a proper subspace BMOw (Rn) of BMO(Rn) such that, if b ∈ BMOw (Rn), then [b, T] is bounded from the weighted Hardy space
H
w
1
(
R
n
)
to the weighted Lebesgue space
L
w
1
(
R
n
)
. Conversely, if b ∈ BMO(Rn) and the commutators of the classical Riesz transforms
{
[
b
,
R
j
]
}
j
=
1
n
are bounded from
H
w
1
(
R
n
)
to
L
w
1
(
R
n
)
, then b ∈ BMOw (Rn). |
---|---|
ISSN: | 0002-9939 1088-6826 |
DOI: | 10.1090/proc/13130 |