Maximum likelihood degree of Fermat hypersurfaces via Euler characteristics
Maximum likelihood degree of a projective variety is the number of critical points of a general likelihood function. In this note, we compute the maximum likelihood degree of Fermat hypersurfaces. We give a formula of the maximum likelihood degree in terms of the constants \beta _{\mu , \nu }, which...
Gespeichert in:
Veröffentlicht in: | Proceedings of the American Mathematical Society 2016-09, Vol.144 (9), p.3649-3655 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Maximum likelihood degree of a projective variety is the number of critical points of a general likelihood function. In this note, we compute the maximum likelihood degree of Fermat hypersurfaces. We give a formula of the maximum likelihood degree in terms of the constants \beta _{\mu , \nu }, which is defined to be the number of complex solutions to the system of equations z_1^\nu =z_2^\nu =\cdots =z_\mu ^\nu =1 and z_1+\cdots +z_\mu +1=0. |
---|---|
ISSN: | 0002-9939 1088-6826 |
DOI: | 10.1090/proc/13127 |