Maximum likelihood degree of Fermat hypersurfaces via Euler characteristics

Maximum likelihood degree of a projective variety is the number of critical points of a general likelihood function. In this note, we compute the maximum likelihood degree of Fermat hypersurfaces. We give a formula of the maximum likelihood degree in terms of the constants \beta _{\mu , \nu }, which...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the American Mathematical Society 2016-09, Vol.144 (9), p.3649-3655
1. Verfasser: Wang, Botong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Maximum likelihood degree of a projective variety is the number of critical points of a general likelihood function. In this note, we compute the maximum likelihood degree of Fermat hypersurfaces. We give a formula of the maximum likelihood degree in terms of the constants \beta _{\mu , \nu }, which is defined to be the number of complex solutions to the system of equations z_1^\nu =z_2^\nu =\cdots =z_\mu ^\nu =1 and z_1+\cdots +z_\mu +1=0.
ISSN:0002-9939
1088-6826
DOI:10.1090/proc/13127