Connected cochain DG algebras of Calabi-Yau dimension 0
Let A be a connected cochain differential graded (DG, for short) algebra. This note shows that A is a 0-Calabi-Yau DG algebra if and only if A is a Koszul DG algebra and \mathrm {Tor}_A^0(\Bbbk _A,{}_A\Bbbk ) is a symmetric coalgebra. Let V be a finite dimensional vector space and w a potential in T...
Gespeichert in:
Veröffentlicht in: | Proceedings of the American Mathematical Society 2017-03, Vol.145 (3), p.937-953 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let A be a connected cochain differential graded (DG, for short) algebra. This note shows that A is a 0-Calabi-Yau DG algebra if and only if A is a Koszul DG algebra and \mathrm {Tor}_A^0(\Bbbk _A,{}_A\Bbbk ) is a symmetric coalgebra. Let V be a finite dimensional vector space and w a potential in T(V). Then the minimal subcoalgebra of T(V) containing w is a symmetric coalgebra, which implies that a locally finite connected cochain DG algebra is 0-CY if and only if it is defined by a potential w. |
---|---|
ISSN: | 0002-9939 1088-6826 |
DOI: | 10.1090/proc/13081 |