Operator-valued dyadic harmonic analysis beyond doubling measures
We obtain a complete characterization of the weak-type (1,1)(1,1) for Haar shift operators in terms of generalized Haar systems adapted to a Borel measure μ\mu in the operator-valued setting. The main technical tool in our method is a noncommutative Calderón-Zygmund decomposition valid for arbitrary...
Gespeichert in:
Veröffentlicht in: | Proceedings of the American Mathematical Society 2016-09, Vol.144 (9), p.3869-3885 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We obtain a complete characterization of the weak-type (1,1)(1,1) for Haar shift operators in terms of generalized Haar systems adapted to a Borel measure μ\mu in the operator-valued setting. The main technical tool in our method is a noncommutative Calderón-Zygmund decomposition valid for arbitrary Borel measures. |
---|---|
ISSN: | 0002-9939 1088-6826 |
DOI: | 10.1090/proc/13073 |