On the Breiman conjecture

Let Y1,Y2,…Y_{1},Y_{2},\ldots be positive, nondegenerate, i.i.d. GG random variables, and independently let X1,X2,…X_{1},X_{2},\ldots be i.i.d. FF random variables. In this note we show that for F∈FF\in \mathcal {F} in a specified class of distributions F\mathcal {F}, whenever ∑XiYi/∑Yi\sum X_{i}Y_{...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the American Mathematical Society 2016-09, Vol.144 (9), p.4043-4053
Hauptverfasser: Kevei, Péter, Mason, David M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let Y1,Y2,…Y_{1},Y_{2},\ldots be positive, nondegenerate, i.i.d. GG random variables, and independently let X1,X2,…X_{1},X_{2},\ldots be i.i.d. FF random variables. In this note we show that for F∈FF\in \mathcal {F} in a specified class of distributions F\mathcal {F}, whenever ∑XiYi/∑Yi\sum X_{i}Y_{i}/\sum Y_{i} converges in distribution to a nondegenerate limit then G necessarily belongs to the domain of attraction of a stable law with index less than 1. The class F\mathcal {F} contains those nondegenerate XX with a finite second moment and those XX in the domain of attraction of a stable law with index 1>α>21>\alpha >2.
ISSN:0002-9939
1088-6826
DOI:10.1090/proc/13024