On the structure of Lipschitz-free spaces
In this note we study the structure of Lipschitz-free Banach spaces. We show that every Lipschitz-free Banach space over an infinite metric space contains a complemented copy of \ell _1. This result has many consequences for the structure of Lipschitz-free Banach spaces. Moreover, we give an example...
Gespeichert in:
Veröffentlicht in: | Proceedings of the American Mathematical Society 2016-09, Vol.144 (9), p.3833-3846 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this note we study the structure of Lipschitz-free Banach spaces. We show that every Lipschitz-free Banach space over an infinite metric space contains a complemented copy of \ell _1. This result has many consequences for the structure of Lipschitz-free Banach spaces. Moreover, we give an example of a countable compact metric space K such that \mathcal {F}(K) is not isomorphic to a subspace of L_1 and we show that whenever M is a subset of \mathbb{R}^n, then \mathcal {F}(M) is weakly sequentially complete; in particular, c_0 does not embed into \mathcal {F}(M). |
---|---|
ISSN: | 0002-9939 1088-6826 |
DOI: | 10.1090/proc/13019 |