On the structure of Lipschitz-free spaces

In this note we study the structure of Lipschitz-free Banach spaces. We show that every Lipschitz-free Banach space over an infinite metric space contains a complemented copy of \ell _1. This result has many consequences for the structure of Lipschitz-free Banach spaces. Moreover, we give an example...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the American Mathematical Society 2016-09, Vol.144 (9), p.3833-3846
Hauptverfasser: Cúth, Marek, Doucha, Michal, Wojtaszczyk, Przemysław
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this note we study the structure of Lipschitz-free Banach spaces. We show that every Lipschitz-free Banach space over an infinite metric space contains a complemented copy of \ell _1. This result has many consequences for the structure of Lipschitz-free Banach spaces. Moreover, we give an example of a countable compact metric space K such that \mathcal {F}(K) is not isomorphic to a subspace of L_1 and we show that whenever M is a subset of \mathbb{R}^n, then \mathcal {F}(M) is weakly sequentially complete; in particular, c_0 does not embed into \mathcal {F}(M).
ISSN:0002-9939
1088-6826
DOI:10.1090/proc/13019