Calibrated geodesic foliations of hyperbolic space
Let H be the hyperbolic space of dimension n + 1. A geodesic foliation of H is given by a smooth unit vector field on H all of whose integral curves are geodesics. Each geodesic foliation of H determines an n-dimensional submanifold of the 2n-dimensional manifold ℒ of all the oriented geodesics of H...
Gespeichert in:
Veröffentlicht in: | Proceedings of the American Mathematical Society 2016-01, Vol.144 (1), p.359-367 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let H be the hyperbolic space of dimension n + 1. A geodesic foliation of H is given by a smooth unit vector field on H all of whose integral curves are geodesics. Each geodesic foliation of H determines an n-dimensional submanifold of the 2n-dimensional manifold ℒ of all the oriented geodesics of H (up to orientation preserving reparametrizations). The space ℒ has a canonical split semi-Riemannian metric induced by the Killing form of the isometry group of H. Using a split special Lagrangian calibration, we study the volume maximization problem for a certain class of geometrically distinguished geodesic foliations, whose corresponding submanifolds of ℒ are space-like.
2010 Mathematics Subject Classification. Primary 53C38, 53C12, 53C22, 53C50.
Key words and phrases. Split special Lagrangian calibration, geodesic foliation, hyperbolic space, space of geodesics. |
---|---|
ISSN: | 0002-9939 1088-6826 |
DOI: | 10.1090/proc/12834 |