Remarks on the Obrechkoff inequality

Let u be the logarithmic potential of a probability measure μ in the plane that satisfies u ( z ) = u ( z ¯ ) , u ( z ) ≤ u ( | z | ) , z ∈ ℂ , and m(t) = μ{z ∈ ℂ* : | Arg z| ≤ t}. Then 1 a ∫ 0 a m ( t ) d t ≤ a 2 π , for every a ∈ (0, π). This improves and generalizes a result of Obrechkoff on zero...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the American Mathematical Society 2016-02, Vol.144 (2), p.703-707
Hauptverfasser: Eremenko, Alexandre, Fryntov, Alexander
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let u be the logarithmic potential of a probability measure μ in the plane that satisfies u ( z ) = u ( z ¯ ) , u ( z ) ≤ u ( | z | ) , z ∈ ℂ , and m(t) = μ{z ∈ ℂ* : | Arg z| ≤ t}. Then 1 a ∫ 0 a m ( t ) d t ≤ a 2 π , for every a ∈ (0, π). This improves and generalizes a result of Obrechkoff on zeros of polynomials with positive coefficients. 2010 Mathematics Subject Classification. Primary 30C15, 31A05. Key words and phrases. Polynomials, logarithmic potential.
ISSN:0002-9939
1088-6826
DOI:10.1090/proc/12738