Scrambled sets in shift spaces on a countable alphabet

edge-shifts on an infinite graph (the subshift of finite type case) or as on an infinite graph (the sofic shift case). We show in the setting of a subshift of finite type on a shift over a countable alphabet that the shift space has Li-Yorke chaos if, and only if, it has a single scrambled pair, and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the American Mathematical Society 2016-01, Vol.144 (1), p.217-224
Hauptverfasser: Raines, Brian E., Underwood, Tyler
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:edge-shifts on an infinite graph (the subshift of finite type case) or as on an infinite graph (the sofic shift case). We show in the setting of a subshift of finite type on a shift over a countable alphabet that the shift space has Li-Yorke chaos if, and only if, it has a single scrambled pair, and in this case the scrambled set is closed and perfect (but not necessarily compact). We give an example of a sofic shift over an infinite alphabet which has a single scrambled pair but does not have Li-Yorke chaos.]]>
ISSN:0002-9939
1088-6826
DOI:10.1090/proc/12690