Strong asymptotic independence on Wiener chaos

Let F_n = (F_{1,n}, \dots ,F_{d,n}), be a sequence of random vectors such that, for every j=1,\dots ,d belongs to a fixed Wiener chaos of a Gaussian field. We show that, as n\to \infty are asymptotically independent if and only if \textup {Cov}(F_{i,n}^2,F_{j,n}^2)\to 0. Our findings are based on a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the American Mathematical Society 2016-02, Vol.144 (2), p.875-886
Hauptverfasser: Nourdin, Ivan, Nualart, David, Peccati, Giovanni
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let F_n = (F_{1,n}, \dots ,F_{d,n}), be a sequence of random vectors such that, for every j=1,\dots ,d belongs to a fixed Wiener chaos of a Gaussian field. We show that, as n\to \infty are asymptotically independent if and only if \textup {Cov}(F_{i,n}^2,F_{j,n}^2)\to 0. Our findings are based on a novel inequality for vectors of multiple Wiener-Itô integrals, and represent a substantial refining of criteria for asymptotic independence in the sense of moments recently established by Nourdin and Rosiński (2014).
ISSN:0002-9939
1088-6826
DOI:10.1090/proc12769