Strong asymptotic independence on Wiener chaos
Let F_n = (F_{1,n}, \dots ,F_{d,n}), be a sequence of random vectors such that, for every j=1,\dots ,d belongs to a fixed Wiener chaos of a Gaussian field. We show that, as n\to \infty are asymptotically independent if and only if \textup {Cov}(F_{i,n}^2,F_{j,n}^2)\to 0. Our findings are based on a...
Gespeichert in:
Veröffentlicht in: | Proceedings of the American Mathematical Society 2016-02, Vol.144 (2), p.875-886 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let F_n = (F_{1,n}, \dots ,F_{d,n}), be a sequence of random vectors such that, for every j=1,\dots ,d belongs to a fixed Wiener chaos of a Gaussian field. We show that, as n\to \infty are asymptotically independent if and only if \textup {Cov}(F_{i,n}^2,F_{j,n}^2)\to 0. Our findings are based on a novel inequality for vectors of multiple Wiener-Itô integrals, and represent a substantial refining of criteria for asymptotic independence in the sense of moments recently established by Nourdin and Rosiński (2014). |
---|---|
ISSN: | 0002-9939 1088-6826 |
DOI: | 10.1090/proc12769 |