An explicit formula for the extended Gross-Keating datum of a quadratic form
In this paper, we give a formula for the extended Gross-Keating datum of a half-integral symmetric matrix over a finite extension of Q p \mathbb {Q}_p (for p > 2 p>2 ) or a finite unramified extension of Q 2 \mathbb {Q}_2 . As an application, we describe an explicit formula for the Siegel seri...
Gespeichert in:
Veröffentlicht in: | Mathematics of computation 2025-01 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we give a formula for the extended Gross-Keating datum of a half-integral symmetric matrix over a finite extension of Q p \mathbb {Q}_p (for p > 2 p>2 ) or a finite unramified extension of Q 2 \mathbb {Q}_2 . As an application, we describe an explicit formula for the Siegel series for Q p \mathbb {Q}_p . We also present the details of algorithms implemented in a Mathematica package to compute the extended Gross-Keating datum and the Siegel series. |
---|---|
ISSN: | 0025-5718 1088-6842 |
DOI: | 10.1090/mcom/4050 |