Wavenumber-explicit stability and convergence analysis of ℎ finite element discretizations of Helmholtz problems in piecewise smooth media

We present a wavenumber-explicit convergence analysis of the h p hp Finite Element Method applied to a class of heterogeneous Helmholtz problems with piecewise analytic coefficients at large wavenumber k k . Our analysis covers the heterogeneous Helmholtz equation with Robin, exact Dirichlet-to-Neum...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematics of computation 2025-01, Vol.94 (351), p.73-122
Hauptverfasser: Bernkopf, M., Chaumont-Frelet, T., Melenk, J.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We present a wavenumber-explicit convergence analysis of the h p hp Finite Element Method applied to a class of heterogeneous Helmholtz problems with piecewise analytic coefficients at large wavenumber k k . Our analysis covers the heterogeneous Helmholtz equation with Robin, exact Dirichlet-to-Neumann, and second order absorbing boundary conditions, as well as perfectly matched layers.
ISSN:0025-5718
1088-6842
DOI:10.1090/mcom/3958