Wavenumber-explicit stability and convergence analysis of ℎ finite element discretizations of Helmholtz problems in piecewise smooth media
We present a wavenumber-explicit convergence analysis of the h p hp Finite Element Method applied to a class of heterogeneous Helmholtz problems with piecewise analytic coefficients at large wavenumber k k . Our analysis covers the heterogeneous Helmholtz equation with Robin, exact Dirichlet-to-Neum...
Gespeichert in:
Veröffentlicht in: | Mathematics of computation 2025-01, Vol.94 (351), p.73-122 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We present a wavenumber-explicit convergence analysis of the h p hp Finite Element Method applied to a class of heterogeneous Helmholtz problems with piecewise analytic coefficients at large wavenumber k k . Our analysis covers the heterogeneous Helmholtz equation with Robin, exact Dirichlet-to-Neumann, and second order absorbing boundary conditions, as well as perfectly matched layers. |
---|---|
ISSN: | 0025-5718 1088-6842 |
DOI: | 10.1090/mcom/3958 |