Rational group algebras of generalized strongly monomial groups: Primitive idempotents and units

We present a method to explicitly compute a complete set of orthogonal primitive idempotents in a simple component with Schur index 1 of a rational group algebra \mathbb{Q}G for G a finite generalized strongly monomial group. For the same groups with no exceptional simple components in \mathbb{Q}G,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematics of computation 2024-02, Vol.93 (350), p.3027-3058
Hauptverfasser: Bakshi, Gurmeet K., Garg, Jyoti, Olteanu, Gabriela
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We present a method to explicitly compute a complete set of orthogonal primitive idempotents in a simple component with Schur index 1 of a rational group algebra \mathbb{Q}G for G a finite generalized strongly monomial group. For the same groups with no exceptional simple components in \mathbb{Q}G, we describe a subgroup of finite index in the group of units \mathcal{U}(\mathbb{Z}G) of the integral group ring \mathbb{Z}G that is generated by three nilpotent groups for which we give explicit description of their generators. We exemplify the theoretical constructions with a detailed concrete example to illustrate the theory. We also show that the Frobenius groups of odd order with a cyclic complement are a class of generalized strongly monomial groups where the theory developed in this paper is applicable.
ISSN:0025-5718
1088-6842
DOI:10.1090/mcom/3937