Rational group algebras of generalized strongly monomial groups: Primitive idempotents and units
We present a method to explicitly compute a complete set of orthogonal primitive idempotents in a simple component with Schur index 1 of a rational group algebra \mathbb{Q}G for G a finite generalized strongly monomial group. For the same groups with no exceptional simple components in \mathbb{Q}G,...
Gespeichert in:
Veröffentlicht in: | Mathematics of computation 2024-02, Vol.93 (350), p.3027-3058 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We present a method to explicitly compute a complete set of orthogonal primitive idempotents in a simple component with Schur index 1 of a rational group algebra \mathbb{Q}G for G a finite generalized strongly monomial group. For the same groups with no exceptional simple components in \mathbb{Q}G, we describe a subgroup of finite index in the group of units \mathcal{U}(\mathbb{Z}G) of the integral group ring \mathbb{Z}G that is generated by three nilpotent groups for which we give explicit description of their generators. We exemplify the theoretical constructions with a detailed concrete example to illustrate the theory. We also show that the Frobenius groups of odd order with a cyclic complement are a class of generalized strongly monomial groups where the theory developed in this paper is applicable. |
---|---|
ISSN: | 0025-5718 1088-6842 |
DOI: | 10.1090/mcom/3937 |