On the -adic zeros of the Tribonacci sequence

Let ( T n ) n ∈ Z (T_n)_{n\in {\mathbb Z}} be the Tribonacci sequence and for a prime p p and an integer m m let ν p ( m ) \nu _p(m) be the exponent of p p in the factorization of m m . For p = 2 p=2 Marques and Lengyel found some formulas relating ν p ( T n ) \nu _p(T_n) with ν p ( f ( n ) ) \nu _p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematics of computation 2024-05, Vol.93 (347), p.1333-1353
Hauptverfasser: Bilu, Yuri, Luca, Florian, Nieuwveld, Joris, Ouaknine, Joël, Worrell, James
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let ( T n ) n ∈ Z (T_n)_{n\in {\mathbb Z}} be the Tribonacci sequence and for a prime p p and an integer m m let ν p ( m ) \nu _p(m) be the exponent of p p in the factorization of m m . For p = 2 p=2 Marques and Lengyel found some formulas relating ν p ( T n ) \nu _p(T_n) with ν p ( f ( n ) ) \nu _p(f(n)) where f ( n ) f(n) is some linear function of n n (which might be constant) according to the residue class of n n modulo 32 32 and asked if similar formulas exist for other primes p p . In this paper, we give an algorithm which tests whether for a given prime p p such formulas exist or not. When they exist, our algorithm computes these formulas. Some numerical results are presented.
ISSN:0025-5718
1088-6842
DOI:10.1090/mcom/3893