On the -adic zeros of the Tribonacci sequence
Let ( T n ) n ∈ Z (T_n)_{n\in {\mathbb Z}} be the Tribonacci sequence and for a prime p p and an integer m m let ν p ( m ) \nu _p(m) be the exponent of p p in the factorization of m m . For p = 2 p=2 Marques and Lengyel found some formulas relating ν p ( T n ) \nu _p(T_n) with ν p ( f ( n ) ) \nu _p...
Gespeichert in:
Veröffentlicht in: | Mathematics of computation 2024-05, Vol.93 (347), p.1333-1353 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let
(
T
n
)
n
∈
Z
(T_n)_{n\in {\mathbb Z}}
be the Tribonacci sequence and for a prime
p
p
and an integer
m
m
let
ν
p
(
m
)
\nu _p(m)
be the exponent of
p
p
in the factorization of
m
m
. For
p
=
2
p=2
Marques and Lengyel found some formulas relating
ν
p
(
T
n
)
\nu _p(T_n)
with
ν
p
(
f
(
n
)
)
\nu _p(f(n))
where
f
(
n
)
f(n)
is some linear function of
n
n
(which might be constant) according to the residue class of
n
n
modulo
32
32
and asked if similar formulas exist for other primes
p
p
. In this paper, we give an algorithm which tests whether for a given prime
p
p
such formulas exist or not. When they exist, our algorithm computes these formulas. Some numerical results are presented. |
---|---|
ISSN: | 0025-5718 1088-6842 |
DOI: | 10.1090/mcom/3893 |