Kleinian sphere packings, reflection groups, and arithmeticity

In this paper we study crystallographic sphere packings and Kleinian sphere packings, introduced first by Kontorovich and Nakamura in 2017 and then studied further by Kapovich and Kontorovich in 2021. In particular, we solve the problem of existence of crystallographic sphere packings in certain hig...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematics of computation 2024-01, Vol.93 (345), p.505-521
Hauptverfasser: Bogachev, Nikolay, Kolpakov, Alexander, Kontorovich, Alex
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper we study crystallographic sphere packings and Kleinian sphere packings, introduced first by Kontorovich and Nakamura in 2017 and then studied further by Kapovich and Kontorovich in 2021. In particular, we solve the problem of existence of crystallographic sphere packings in certain higher dimensions posed by Kontorovich and Nakamura. In addition, we present a geometric doubling procedure allowing to obtain sphere packings from some Coxeter polyhedra without isolated roots, and study “properly integral” packings (that is, ones which are integral but not superintegral). Our techniques rely extensively on computations with Lorentzian quadratic forms, their orthogonal groups, and associated higher–dimensional hyperbolic polyhedra.
ISSN:0025-5718
1088-6842
DOI:10.1090/mcom/3858