A fully discrete plates complex on polygonal meshes with application to the Kirchhoff--Love problem

In this work we develop a novel fully discrete version of the plates complex, an exact Hilbert complex relevant for the mixed formulation of fourth-order problems. The derivation of the discrete complex follows the discrete de Rham paradigm, leading to an arbitrary-order construction that applies to...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematics of computation 2023-01, Vol.92 (339), p.51-77
Hauptverfasser: Di Pietro, Daniele, Droniou, Jérôme
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this work we develop a novel fully discrete version of the plates complex, an exact Hilbert complex relevant for the mixed formulation of fourth-order problems. The derivation of the discrete complex follows the discrete de Rham paradigm, leading to an arbitrary-order construction that applies to meshes composed of general polygonal elements. The discrete plates complex is then used to derive a novel numerical scheme for Kirchhoff–Love plates, for which a full stability and convergence analysis are performed. Extensive numerical tests complete the exposition.
ISSN:0025-5718
1088-6842
DOI:10.1090/mcom/3765