Hybridization and postprocessing in finite element exterior calculus

We hybridize the methods of finite element exterior calculus for the Hodge–Laplace problem on differential k-forms in \mathbb {R}^n. In the cases k=0 and k=n, we recover well-known primal and mixed hybrid methods for the scalar Poisson equation, while for 0

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematics of computation 2023, Vol.92 (339), p.79-115
Hauptverfasser: Awanou, Gerard, Fabien, Maurice, Guzmán, Johnny, Stern, Ari
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 115
container_issue 339
container_start_page 79
container_title Mathematics of computation
container_volume 92
creator Awanou, Gerard
Fabien, Maurice
Guzmán, Johnny
Stern, Ari
description We hybridize the methods of finite element exterior calculus for the Hodge–Laplace problem on differential k-forms in \mathbb {R}^n. In the cases k=0 and k=n, we recover well-known primal and mixed hybrid methods for the scalar Poisson equation, while for 0
doi_str_mv 10.1090/mcom/3743
format Article
fullrecord <record><control><sourceid>ams_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1090_mcom_3743</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1090_mcom_3743</sourcerecordid><originalsourceid>FETCH-LOGICAL-a253t-c9f203ddabea46cd32acd590fa03cafa1ae1f7e2120f802a86d5c9857e6946303</originalsourceid><addsrcrecordid>eNp9zz1LBDEUheEgCq6rhf8ghY3FuDfJZCZTyvqxwoKN1sPd5EYi80WSBddfr8NaW53m4cDL2LWAOwENrHo79itVl-qELQQYU1SmlKdsASB1oWthztlFSp8AICpdL9jD5rCLwYVvzGEcOA6OT2PKUxwtpRSGDx4G7sMQMnHqqKchc_rKFMMYucXO7rt9umRnHrtEV3-7ZO9Pj2_rTbF9fX5Z328LlFrlwjZegnIOd4RlZZ2SaJ1uwCMoix4FkvA1SSHBG5BoKqdtY3RNVVNWCtSS3R5_bRxTiuTbKYYe46EV0M757Zzfzvm_9uZosU__sB9301uU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Hybridization and postprocessing in finite element exterior calculus</title><source>American Mathematical Society Publications</source><creator>Awanou, Gerard ; Fabien, Maurice ; Guzmán, Johnny ; Stern, Ari</creator><creatorcontrib>Awanou, Gerard ; Fabien, Maurice ; Guzmán, Johnny ; Stern, Ari</creatorcontrib><description>We hybridize the methods of finite element exterior calculus for the Hodge–Laplace problem on differential k-forms in \mathbb {R}^n. In the cases k=0 and k=n, we recover well-known primal and mixed hybrid methods for the scalar Poisson equation, while for 0&lt;k&lt;n, we obtain new hybrid finite element methods, including methods for the vector Poisson equation in n=2 and n=3 dimensions. We also generalize Stenberg postprocessing [RAIRO Modél. Math. Anal. Numér. 25 (1991), pp. 151–167] from k=n to arbitrary k, proving new superconvergence estimates. Finally, we discuss how this hybridization framework may be extended to include nonconforming and hybridizable discontinuous Galerkin methods.</description><identifier>ISSN: 0025-5718</identifier><identifier>EISSN: 1088-6842</identifier><identifier>DOI: 10.1090/mcom/3743</identifier><language>eng</language><ispartof>Mathematics of computation, 2023, Vol.92 (339), p.79-115</ispartof><rights>Copyright 2022, American Mathematical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a253t-c9f203ddabea46cd32acd590fa03cafa1ae1f7e2120f802a86d5c9857e6946303</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ams.org/mcom/2023-92-339/S0025-5718-2022-03743-1/S0025-5718-2022-03743-1.pdf$$EPDF$$P50$$Gams$$H</linktopdf><linktohtml>$$Uhttps://www.ams.org/mcom/2023-92-339/S0025-5718-2022-03743-1/$$EHTML$$P50$$Gams$$H</linktohtml><link.rule.ids>68,314,780,784,4024,23328,27923,27924,27925,77836,77846</link.rule.ids></links><search><creatorcontrib>Awanou, Gerard</creatorcontrib><creatorcontrib>Fabien, Maurice</creatorcontrib><creatorcontrib>Guzmán, Johnny</creatorcontrib><creatorcontrib>Stern, Ari</creatorcontrib><title>Hybridization and postprocessing in finite element exterior calculus</title><title>Mathematics of computation</title><description>We hybridize the methods of finite element exterior calculus for the Hodge–Laplace problem on differential k-forms in \mathbb {R}^n. In the cases k=0 and k=n, we recover well-known primal and mixed hybrid methods for the scalar Poisson equation, while for 0&lt;k&lt;n, we obtain new hybrid finite element methods, including methods for the vector Poisson equation in n=2 and n=3 dimensions. We also generalize Stenberg postprocessing [RAIRO Modél. Math. Anal. Numér. 25 (1991), pp. 151–167] from k=n to arbitrary k, proving new superconvergence estimates. Finally, we discuss how this hybridization framework may be extended to include nonconforming and hybridizable discontinuous Galerkin methods.</description><issn>0025-5718</issn><issn>1088-6842</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9zz1LBDEUheEgCq6rhf8ghY3FuDfJZCZTyvqxwoKN1sPd5EYi80WSBddfr8NaW53m4cDL2LWAOwENrHo79itVl-qELQQYU1SmlKdsASB1oWthztlFSp8AICpdL9jD5rCLwYVvzGEcOA6OT2PKUxwtpRSGDx4G7sMQMnHqqKchc_rKFMMYucXO7rt9umRnHrtEV3-7ZO9Pj2_rTbF9fX5Z328LlFrlwjZegnIOd4RlZZ2SaJ1uwCMoix4FkvA1SSHBG5BoKqdtY3RNVVNWCtSS3R5_bRxTiuTbKYYe46EV0M757Zzfzvm_9uZosU__sB9301uU</recordid><startdate>2023</startdate><enddate>2023</enddate><creator>Awanou, Gerard</creator><creator>Fabien, Maurice</creator><creator>Guzmán, Johnny</creator><creator>Stern, Ari</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>2023</creationdate><title>Hybridization and postprocessing in finite element exterior calculus</title><author>Awanou, Gerard ; Fabien, Maurice ; Guzmán, Johnny ; Stern, Ari</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a253t-c9f203ddabea46cd32acd590fa03cafa1ae1f7e2120f802a86d5c9857e6946303</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Awanou, Gerard</creatorcontrib><creatorcontrib>Fabien, Maurice</creatorcontrib><creatorcontrib>Guzmán, Johnny</creatorcontrib><creatorcontrib>Stern, Ari</creatorcontrib><collection>CrossRef</collection><jtitle>Mathematics of computation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Awanou, Gerard</au><au>Fabien, Maurice</au><au>Guzmán, Johnny</au><au>Stern, Ari</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hybridization and postprocessing in finite element exterior calculus</atitle><jtitle>Mathematics of computation</jtitle><date>2023</date><risdate>2023</risdate><volume>92</volume><issue>339</issue><spage>79</spage><epage>115</epage><pages>79-115</pages><issn>0025-5718</issn><eissn>1088-6842</eissn><abstract>We hybridize the methods of finite element exterior calculus for the Hodge–Laplace problem on differential k-forms in \mathbb {R}^n. In the cases k=0 and k=n, we recover well-known primal and mixed hybrid methods for the scalar Poisson equation, while for 0&lt;k&lt;n, we obtain new hybrid finite element methods, including methods for the vector Poisson equation in n=2 and n=3 dimensions. We also generalize Stenberg postprocessing [RAIRO Modél. Math. Anal. Numér. 25 (1991), pp. 151–167] from k=n to arbitrary k, proving new superconvergence estimates. Finally, we discuss how this hybridization framework may be extended to include nonconforming and hybridizable discontinuous Galerkin methods.</abstract><doi>10.1090/mcom/3743</doi><tpages>37</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0025-5718
ispartof Mathematics of computation, 2023, Vol.92 (339), p.79-115
issn 0025-5718
1088-6842
language eng
recordid cdi_crossref_primary_10_1090_mcom_3743
source American Mathematical Society Publications
title Hybridization and postprocessing in finite element exterior calculus
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T20%3A58%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ams_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hybridization%20and%20postprocessing%20in%20finite%20element%20exterior%20calculus&rft.jtitle=Mathematics%20of%20computation&rft.au=Awanou,%20Gerard&rft.date=2023&rft.volume=92&rft.issue=339&rft.spage=79&rft.epage=115&rft.pages=79-115&rft.issn=0025-5718&rft.eissn=1088-6842&rft_id=info:doi/10.1090/mcom/3743&rft_dat=%3Cams_cross%3E10_1090_mcom_3743%3C/ams_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true