Hybridization and postprocessing in finite element exterior calculus

We hybridize the methods of finite element exterior calculus for the Hodge–Laplace problem on differential k-forms in \mathbb {R}^n. In the cases k=0 and k=n, we recover well-known primal and mixed hybrid methods for the scalar Poisson equation, while for 0

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematics of computation 2023, Vol.92 (339), p.79-115
Hauptverfasser: Awanou, Gerard, Fabien, Maurice, Guzmán, Johnny, Stern, Ari
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We hybridize the methods of finite element exterior calculus for the Hodge–Laplace problem on differential k-forms in \mathbb {R}^n. In the cases k=0 and k=n, we recover well-known primal and mixed hybrid methods for the scalar Poisson equation, while for 0
ISSN:0025-5718
1088-6842
DOI:10.1090/mcom/3743