Hybridization and postprocessing in finite element exterior calculus
We hybridize the methods of finite element exterior calculus for the Hodge–Laplace problem on differential k-forms in \mathbb {R}^n. In the cases k=0 and k=n, we recover well-known primal and mixed hybrid methods for the scalar Poisson equation, while for 0
Gespeichert in:
Veröffentlicht in: | Mathematics of computation 2023, Vol.92 (339), p.79-115 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We hybridize the methods of finite element exterior calculus for the Hodge–Laplace problem on differential k-forms in \mathbb {R}^n. In the cases k=0 and k=n, we recover well-known primal and mixed hybrid methods for the scalar Poisson equation, while for 0 |
---|---|
ISSN: | 0025-5718 1088-6842 |
DOI: | 10.1090/mcom/3743 |