Convergence acceleration of ensemble Kalman inversion in nonlinear settings

Many data-science problems can be formulated as an inverse problem, where the parameters are estimated by minimizing a proper loss function. When complicated black-box models are involved, derivative-free optimization tools are often needed. The ensemble Kalman filter (EnKF) is a particle-based deri...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematics of computation 2022-05, Vol.91 (335), p.1247
Hauptverfasser: Chada, Neil, Tong, Xin
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Many data-science problems can be formulated as an inverse problem, where the parameters are estimated by minimizing a proper loss function. When complicated black-box models are involved, derivative-free optimization tools are often needed. The ensemble Kalman filter (EnKF) is a particle-based derivative-free Bayesian algorithm originally designed for data assimilation. Recently, it has been applied to inverse problems for computational efficiency. The resulting algorithm, known as ensemble Kalman inversion (EKI), involves running an ensemble of particles with EnKF update rules so they can converge to a minimizer. In this article, we investigate EKI convergence in general nonlinear settings. To improve convergence speed and stability, we consider applying EKI with non-constant step-sizes and covariance inflation. We prove that EKI can hit critical points with finite steps in non-convex settings. We further prove that EKI converges to the global minimizer polynomially fast if the loss function is strongly convex. We verify the analysis presented with numerical experiments on two inverse problems.
ISSN:0025-5718
1088-6842
DOI:10.1090/mcom/3709