Finite element approximation and preconditioning for anisothermal flow of implicitly-constituted non-Newtonian fluids

We devise 3-field and 4-field finite element approximations of a system describing the steady state of an incompressible heat-conducting fluid with implicit non-Newtonian rheology. We prove that the sequence of numerical approximations converges to a weak solution of the problem. We develop a block...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematics of computation 2022-03, Vol.91 (334), p.659-697
Hauptverfasser: Farrell, Patrick, Gazca Orozco, Pablo Alexei, Süli, Endre
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We devise 3-field and 4-field finite element approximations of a system describing the steady state of an incompressible heat-conducting fluid with implicit non-Newtonian rheology. We prove that the sequence of numerical approximations converges to a weak solution of the problem. We develop a block preconditioner based on augmented Lagrangian stabilisation for a discretisation based on the Scott–Vogelius finite element pair for the velocity and pressure. The preconditioner involves a specialised multigrid algorithm that makes use of a space decomposition that captures the kernel of the divergence and non-standard intergrid transfer operators. The preconditioner exhibits robust convergence behaviour when applied to the Navier–Stokes and power-law systems, including temperature-dependent viscosity, heat conductivity and viscous dissipation.
ISSN:0025-5718
1088-6842
DOI:10.1090/mcom/3703