Higher-order linearly implicit full discretization of the Landau–Lifshitz–Gilbert equation
For the Landau–Lifshitz–Gilbert (LLG) equation of micromagnetics we study linearly implicit backward difference formula (BDF) time discretizations up to order 5 combined with higher-order non-conforming finite element space discretizations, which are based on the weak formulation due to Alouges but...
Gespeichert in:
Veröffentlicht in: | Mathematics of computation 2021-02, Vol.90 (329), p.995-1038 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | For the Landau–Lifshitz–Gilbert (LLG) equation of micromagnetics we study linearly implicit backward difference formula (BDF) time discretizations up to order 5 combined with higher-order non-conforming finite element space discretizations, which are based on the weak formulation due to Alouges but use approximate tangent spaces that are defined by L^2-averaged instead of nodal orthogonality constraints. We prove stability and optimal-order error bounds in the situation of a sufficiently regular solution. For the BDF methods of orders 3 to 5, this requires that the damping parameter in the LLG equations be above a positive threshold; this condition is not needed for the A-stable methods of orders 1 and 2, for which furthermore a discrete energy inequality irrespective of solution regularity is proved. |
---|---|
ISSN: | 0025-5718 1088-6842 |
DOI: | 10.1090/mcom/3597 |