Higher-order linearly implicit full discretization of the Landau–Lifshitz–Gilbert equation

For the Landau–Lifshitz–Gilbert (LLG) equation of micromagnetics we study linearly implicit backward difference formula (BDF) time discretizations up to order 5 combined with higher-order non-conforming finite element space discretizations, which are based on the weak formulation due to Alouges but...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematics of computation 2021-02, Vol.90 (329), p.995-1038
Hauptverfasser: Akrivis, Georgios, Feischl, Michael, Kovács, Balázs, Lubich, Christian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:For the Landau–Lifshitz–Gilbert (LLG) equation of micromagnetics we study linearly implicit backward difference formula (BDF) time discretizations up to order 5 combined with higher-order non-conforming finite element space discretizations, which are based on the weak formulation due to Alouges but use approximate tangent spaces that are defined by L^2-averaged instead of nodal orthogonality constraints. We prove stability and optimal-order error bounds in the situation of a sufficiently regular solution. For the BDF methods of orders 3 to 5, this requires that the damping parameter in the LLG equations be above a positive threshold; this condition is not needed for the A-stable methods of orders 1 and 2, for which furthermore a discrete energy inequality irrespective of solution regularity is proved.
ISSN:0025-5718
1088-6842
DOI:10.1090/mcom/3597