Subdiffusion with a time-dependent coefficient: Analysis and numerical solution

In this work, a complete error analysis is presented for fully discrete solutions of the subdiffusion equation with a time-dependent diffusion coefficient, obtained by the Galerkin finite element method with conforming piecewise linear finite elements in space and backward Euler convolution quadratu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematics of computation 2019-09, Vol.88 (319), p.2157-2186
Hauptverfasser: JIN, BANGTI, LI, BUYANG, ZHOU, ZHI
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this work, a complete error analysis is presented for fully discrete solutions of the subdiffusion equation with a time-dependent diffusion coefficient, obtained by the Galerkin finite element method with conforming piecewise linear finite elements in space and backward Euler convolution quadrature in time. The regularity of the solutions of the subdiffusion model is proved for both nonsmooth initial data and incompatible source term. Optimal-order convergence of the numerical solutions is established using the proven solution regularity and a novel perturbation argument via freezing the diffusion coefficient at a fixed time. The analysis is supported by numerical experiments.
ISSN:0025-5718
1088-6842
DOI:10.1090/mcom/3413