Lopsided approximation of amoebas

The amoeba of a Laurent polynomial is the image of the corresponding hypersurface under the coordinatewise log absolute value map. In this article, we demonstrate that a theoretical amoeba approximation method due to Purbhoo can be used efficiently in practice. To do this, we resolve the main bottle...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematics of computation 2019-01, Vol.88 (315), p.485-500
Hauptverfasser: Forsgård, Jens, Matusevich, Laura Felicia, Mehlhop, Nathan, de Wolff, Timo
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The amoeba of a Laurent polynomial is the image of the corresponding hypersurface under the coordinatewise log absolute value map. In this article, we demonstrate that a theoretical amoeba approximation method due to Purbhoo can be used efficiently in practice. To do this, we resolve the main bottleneck in Purbhoo's method by exploiting relations between cyclic resultants. We use the same approach to give an approximation of the Log preimage of the amoeba of a Laurent polynomial using semi-algebraic sets. We also provide a SINGULAR/S AGE implementation of these algorithms, which shows a significant speedup when our specialized cyclic resultant computation is used, versus a general purpose resultant algorithm.
ISSN:0025-5718
1088-6842
DOI:10.1090/mcom/3323