Adaptive discontinuous Galerkin methods for elliptic interface problems

An interior-penalty discontinuous Galerkin (dG) method for an elliptic interface problem involving, possibly, curved interfaces, with flux-balancing interface conditions, e.g., modelling mass transfer of solutes through semi-permeable membranes, is considered. The method allows for extremely general...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematics of computation 2018-11, Vol.87 (314), p.2675-2707
Hauptverfasser: CANGIANI, ANDREA, GEORGOULIS, EMMANUIL H., SABAWI, YOUNIS A.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:An interior-penalty discontinuous Galerkin (dG) method for an elliptic interface problem involving, possibly, curved interfaces, with flux-balancing interface conditions, e.g., modelling mass transfer of solutes through semi-permeable membranes, is considered. The method allows for extremely general curved element shapes employed to resolve the interface geometry exactly. A residual-type a posteriori error estimator for this dG method is proposed and upper and lower bounds of the error in the respective dG-energy norm are proven. The a posteriori error bounds are subsequently used to prove a basic a priori convergence result. The theory presented is complemented by a series of numerical experiments. The presented approach applies immediately to the case of curved domains with non-essential boundary conditions, too.
ISSN:0025-5718
1088-6842
DOI:10.1090/mcom/3322