Posterior consistency for Gaussian process approximations of Bayesian posterior distributions

We study the use of Gaussian process emulators to approximate the parameter-to-observation map or the negative log-likelihood in Bayesian inverse problems. We prove error bounds on the Hellinger distance between the true posterior distribution and various approximations based on the Gaussian process...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematics of computation 2018-03, Vol.87 (310), p.721-753
Hauptverfasser: STUART, ANDREW M., TECKENTRUP, ARETHA L.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We study the use of Gaussian process emulators to approximate the parameter-to-observation map or the negative log-likelihood in Bayesian inverse problems. We prove error bounds on the Hellinger distance between the true posterior distribution and various approximations based on the Gaussian process emulator. Our analysis includes approximations based on the mean of the predictive process, as well as approximations based on the full Gaussian process emulator. Our results show that the Hellinger distance between the true posterior and its approximations can be bounded by moments of the error in the emulator. Numerical results confirm our theoretical findings.
ISSN:0025-5718
1088-6842
DOI:10.1090/mcom/3244