More on stochastic and variational approach to the Lax-Friedrichs scheme

A stochastic and variational aspect of the Lax-Friedrichs scheme applied to hyperbolic scalar conservation laws and Hamilton-Jacobi equations generated by space-time dependent flux functions of the Tonelli type was clarified by Soga (2015). The results for the Lax-Friedrichs scheme are extended here...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematics of computation 2016-09, Vol.85 (301), p.2161-2193
1. Verfasser: Soga, Kohei
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2193
container_issue 301
container_start_page 2161
container_title Mathematics of computation
container_volume 85
creator Soga, Kohei
description A stochastic and variational aspect of the Lax-Friedrichs scheme applied to hyperbolic scalar conservation laws and Hamilton-Jacobi equations generated by space-time dependent flux functions of the Tonelli type was clarified by Soga (2015). The results for the Lax-Friedrichs scheme are extended here to show its time-global stability, the large-time behavior, and error estimates. Also provided is a weak KAM-like theorem for discrete equations that is useful in the numerical analysis and simulation of the weak KAM theory. As one application, a finite difference approximation to effective Hamiltonians and KAM tori is rigorously treated. The proofs essentially rely on the calculus of variations in the Lax-Friedrichs scheme and on the theory of viscosity solutions of Hamilton-Jacobi equations.
doi_str_mv 10.1090/mcom/3061
format Article
fullrecord <record><control><sourceid>jstor_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1090_mcom_3061</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>mathcomp.85.301.2161</jstor_id><sourcerecordid>mathcomp.85.301.2161</sourcerecordid><originalsourceid>FETCH-LOGICAL-a393t-b1231683de98c3a475450beee5b552bc7f91143a71d73d003af574c6c9a1f36b3</originalsourceid><addsrcrecordid>eNp90DFPwzAQhmELgUQpDPwDDywMoXdxHDsjqihFCmKB2bo4jpKqqSPbQvDvaSmCjemWR590L2PXCHcIFSxG68eFgBJP2AxB66zURX7KZgC5zKRCfc4uYtwAAJZSzdj62QfH_Y7H5G1PMQ2W067l7xQGSoPf0ZbTNAVPtufJ89Q7XtNHtgqDa8Ng-8ij7d3oLtlZR9vorn7unL2tHl6X66x-eXxa3tcZiUqkrMFcYKlF6yptBRVKFhIa55xspMwbq7oKsRCksFWiBRDUSVXY0laEnSgbMWe3x10bfIzBdWYKw0jh0yCYQwJzSGAOCf7sZv9d-IUjpX5vJqPl3qHJ8dveHC2N8Z_JL45oaR0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>More on stochastic and variational approach to the Lax-Friedrichs scheme</title><source>American Mathematical Society Publications (Freely Accessible)</source><source>JSTOR Mathematics &amp; Statistics</source><source>Jstor Complete Legacy</source><source>American Mathematical Society Publications</source><creator>Soga, Kohei</creator><creatorcontrib>Soga, Kohei</creatorcontrib><description>A stochastic and variational aspect of the Lax-Friedrichs scheme applied to hyperbolic scalar conservation laws and Hamilton-Jacobi equations generated by space-time dependent flux functions of the Tonelli type was clarified by Soga (2015). The results for the Lax-Friedrichs scheme are extended here to show its time-global stability, the large-time behavior, and error estimates. Also provided is a weak KAM-like theorem for discrete equations that is useful in the numerical analysis and simulation of the weak KAM theory. As one application, a finite difference approximation to effective Hamiltonians and KAM tori is rigorously treated. The proofs essentially rely on the calculus of variations in the Lax-Friedrichs scheme and on the theory of viscosity solutions of Hamilton-Jacobi equations.</description><identifier>ISSN: 0025-5718</identifier><identifier>EISSN: 1088-6842</identifier><identifier>DOI: 10.1090/mcom/3061</identifier><language>eng</language><publisher>American Mathematical Society</publisher><ispartof>Mathematics of computation, 2016-09, Vol.85 (301), p.2161-2193</ispartof><rights>Copyright 2016, American Mathematical Society</rights><rights>2016 American Mathematical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a393t-b1231683de98c3a475450beee5b552bc7f91143a71d73d003af574c6c9a1f36b3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttp://www.ams.org/mcom/2016-85-301/S0025-5718-2016-03061-6/S0025-5718-2016-03061-6.pdf$$EPDF$$P50$$Gams$$H</linktopdf><linktohtml>$$Uhttp://www.ams.org/mcom/2016-85-301/S0025-5718-2016-03061-6/$$EHTML$$P50$$Gams$$H</linktohtml><link.rule.ids>68,69,314,777,781,800,829,23305,23309,27905,27906,57998,58002,58231,58235,77585,77587,77595,77597</link.rule.ids></links><search><creatorcontrib>Soga, Kohei</creatorcontrib><title>More on stochastic and variational approach to the Lax-Friedrichs scheme</title><title>Mathematics of computation</title><description>A stochastic and variational aspect of the Lax-Friedrichs scheme applied to hyperbolic scalar conservation laws and Hamilton-Jacobi equations generated by space-time dependent flux functions of the Tonelli type was clarified by Soga (2015). The results for the Lax-Friedrichs scheme are extended here to show its time-global stability, the large-time behavior, and error estimates. Also provided is a weak KAM-like theorem for discrete equations that is useful in the numerical analysis and simulation of the weak KAM theory. As one application, a finite difference approximation to effective Hamiltonians and KAM tori is rigorously treated. The proofs essentially rely on the calculus of variations in the Lax-Friedrichs scheme and on the theory of viscosity solutions of Hamilton-Jacobi equations.</description><issn>0025-5718</issn><issn>1088-6842</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp90DFPwzAQhmELgUQpDPwDDywMoXdxHDsjqihFCmKB2bo4jpKqqSPbQvDvaSmCjemWR590L2PXCHcIFSxG68eFgBJP2AxB66zURX7KZgC5zKRCfc4uYtwAAJZSzdj62QfH_Y7H5G1PMQ2W067l7xQGSoPf0ZbTNAVPtufJ89Q7XtNHtgqDa8Ng-8ij7d3oLtlZR9vorn7unL2tHl6X66x-eXxa3tcZiUqkrMFcYKlF6yptBRVKFhIa55xspMwbq7oKsRCksFWiBRDUSVXY0laEnSgbMWe3x10bfIzBdWYKw0jh0yCYQwJzSGAOCf7sZv9d-IUjpX5vJqPl3qHJ8dveHC2N8Z_JL45oaR0</recordid><startdate>20160901</startdate><enddate>20160901</enddate><creator>Soga, Kohei</creator><general>American Mathematical Society</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20160901</creationdate><title>More on stochastic and variational approach to the Lax-Friedrichs scheme</title><author>Soga, Kohei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a393t-b1231683de98c3a475450beee5b552bc7f91143a71d73d003af574c6c9a1f36b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Soga, Kohei</creatorcontrib><collection>CrossRef</collection><jtitle>Mathematics of computation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Soga, Kohei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>More on stochastic and variational approach to the Lax-Friedrichs scheme</atitle><jtitle>Mathematics of computation</jtitle><date>2016-09-01</date><risdate>2016</risdate><volume>85</volume><issue>301</issue><spage>2161</spage><epage>2193</epage><pages>2161-2193</pages><issn>0025-5718</issn><eissn>1088-6842</eissn><abstract>A stochastic and variational aspect of the Lax-Friedrichs scheme applied to hyperbolic scalar conservation laws and Hamilton-Jacobi equations generated by space-time dependent flux functions of the Tonelli type was clarified by Soga (2015). The results for the Lax-Friedrichs scheme are extended here to show its time-global stability, the large-time behavior, and error estimates. Also provided is a weak KAM-like theorem for discrete equations that is useful in the numerical analysis and simulation of the weak KAM theory. As one application, a finite difference approximation to effective Hamiltonians and KAM tori is rigorously treated. The proofs essentially rely on the calculus of variations in the Lax-Friedrichs scheme and on the theory of viscosity solutions of Hamilton-Jacobi equations.</abstract><pub>American Mathematical Society</pub><doi>10.1090/mcom/3061</doi><tpages>33</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0025-5718
ispartof Mathematics of computation, 2016-09, Vol.85 (301), p.2161-2193
issn 0025-5718
1088-6842
language eng
recordid cdi_crossref_primary_10_1090_mcom_3061
source American Mathematical Society Publications (Freely Accessible); JSTOR Mathematics & Statistics; Jstor Complete Legacy; American Mathematical Society Publications
title More on stochastic and variational approach to the Lax-Friedrichs scheme
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T01%3A14%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=More%20on%20stochastic%20and%20variational%20approach%20to%20the%20Lax-Friedrichs%20scheme&rft.jtitle=Mathematics%20of%20computation&rft.au=Soga,%20Kohei&rft.date=2016-09-01&rft.volume=85&rft.issue=301&rft.spage=2161&rft.epage=2193&rft.pages=2161-2193&rft.issn=0025-5718&rft.eissn=1088-6842&rft_id=info:doi/10.1090/mcom/3061&rft_dat=%3Cjstor_cross%3Emathcomp.85.301.2161%3C/jstor_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=mathcomp.85.301.2161&rfr_iscdi=true