More on stochastic and variational approach to the Lax-Friedrichs scheme
A stochastic and variational aspect of the Lax-Friedrichs scheme applied to hyperbolic scalar conservation laws and Hamilton-Jacobi equations generated by space-time dependent flux functions of the Tonelli type was clarified by Soga (2015). The results for the Lax-Friedrichs scheme are extended here...
Gespeichert in:
Veröffentlicht in: | Mathematics of computation 2016-09, Vol.85 (301), p.2161-2193 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A stochastic and variational aspect of the Lax-Friedrichs scheme applied to hyperbolic scalar conservation laws and Hamilton-Jacobi equations generated by space-time dependent flux functions of the Tonelli type was clarified by Soga (2015). The results for the Lax-Friedrichs scheme are extended here to show its time-global stability, the large-time behavior, and error estimates. Also provided is a weak KAM-like theorem for discrete equations that is useful in the numerical analysis and simulation of the weak KAM theory. As one application, a finite difference approximation to effective Hamiltonians and KAM tori is rigorously treated. The proofs essentially rely on the calculus of variations in the Lax-Friedrichs scheme and on the theory of viscosity solutions of Hamilton-Jacobi equations. |
---|---|
ISSN: | 0025-5718 1088-6842 |
DOI: | 10.1090/mcom/3061 |