Projection-free approximation of geometrically constrained partial differential equations
We devise algorithms for the numerical approximation of partial differential equations involving a nonlinear, pointwise holonomic constraint. The elliptic, parabolic, and hyperbolic model equations are replaced by sequences of linear problems with a linear constraint. Stability and convergence hold...
Gespeichert in:
Veröffentlicht in: | Mathematics of computation 2016-05, Vol.85 (299), p.1033-1049 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We devise algorithms for the numerical approximation of partial differential equations involving a nonlinear, pointwise holonomic constraint. The elliptic, parabolic, and hyperbolic model equations are replaced by sequences of linear problems with a linear constraint. Stability and convergence hold unconditionally with respect to step sizes and triangulations. In the stationary situation a multilevel strategy is proposed that iteratively decreases the step size. Numerical experiments illustrate the accuracy of the approach. |
---|---|
ISSN: | 0025-5718 1088-6842 |
DOI: | 10.1090/mcom/3008 |