The Fontaine-Mazur conjecture in the residually reducible case

We prove new cases of Fontaine-Mazur conjecture on two-dimensional Galois representations over \mathbb {Q} when the residual representation is reducible. Our approach is via a semi-simple local-global compatibility of the completed cohomology and a Taylor-Wiles patching argument for the completed ho...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Mathematical Society 2022-10, Vol.35 (4), p.1031
1. Verfasser: Pan, Lue
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We prove new cases of Fontaine-Mazur conjecture on two-dimensional Galois representations over \mathbb {Q} when the residual representation is reducible. Our approach is via a semi-simple local-global compatibility of the completed cohomology and a Taylor-Wiles patching argument for the completed homology in this case. As a key input, we generalize the work of Skinner-Wiles in the ordinary case. In addition, we also treat the residually irreducible case at the end of the paper. Combining with people’s earlier work, we can prove the Fontaine-Mazur conjecture completely in the regular case when p\geq 5.
ISSN:0894-0347
1088-6834
DOI:10.1090/jams/991