The Fontaine-Mazur conjecture in the residually reducible case
We prove new cases of Fontaine-Mazur conjecture on two-dimensional Galois representations over \mathbb {Q} when the residual representation is reducible. Our approach is via a semi-simple local-global compatibility of the completed cohomology and a Taylor-Wiles patching argument for the completed ho...
Gespeichert in:
Veröffentlicht in: | Journal of the American Mathematical Society 2022-10, Vol.35 (4), p.1031 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We prove new cases of Fontaine-Mazur conjecture on two-dimensional Galois representations over \mathbb {Q} when the residual representation is reducible. Our approach is via a semi-simple local-global compatibility of the completed cohomology and a Taylor-Wiles patching argument for the completed homology in this case. As a key input, we generalize the work of Skinner-Wiles in the ordinary case. In addition, we also treat the residually irreducible case at the end of the paper. Combining with people’s earlier work, we can prove the Fontaine-Mazur conjecture completely in the regular case when p\geq 5. |
---|---|
ISSN: | 0894-0347 1088-6834 |
DOI: | 10.1090/jams/991 |