Algebraicity of the metric tangent cones and equivariant K-stability

We prove two new results on the K-polystability of \mathbb {Q}-Fano varieties based on purely algebro-geometric arguments. The first one says that any K-semistable log Fano cone has a special degeneration to a uniquely determined K-polystable log Fano cone. As a corollary, we combine it with the dif...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Mathematical Society 2021-10, Vol.34 (4), p.1175-1214
Hauptverfasser: Li, Chi, Wang, Xiaowei, Xu, Chenyang
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We prove two new results on the K-polystability of \mathbb {Q}-Fano varieties based on purely algebro-geometric arguments. The first one says that any K-semistable log Fano cone has a special degeneration to a uniquely determined K-polystable log Fano cone. As a corollary, we combine it with the differential-geometric results to complete the proof of Donaldson-Sun’s conjecture which says that the metric tangent cone of any point appearing on a Gromov-Hausdorff limit of Kähler-Einstein Fano manifolds depends only on the algebraic structure of the singularity. The second result says that for any log Fano variety with the torus action, K-polystability is equivalent to equivariant K-polystability, that is, to check K-polystability, it is sufficient to check special test configurations which are equivariant under the torus action.
ISSN:0894-0347
1088-6834
DOI:10.1090/jams/974