Geometric stabilisation via p-adic integration
In this article we give a new proof of Ngô's geometric stabilisation theorem, which implies the fundamental lemma. This is a statement which relates the cohomology of Hitchin fibres for a quasi-split reductive group scheme G to the cohomology of Hitchin fibres for the endoscopy groups H_{\kappa...
Gespeichert in:
Veröffentlicht in: | Journal of the American Mathematical Society 2020-07, Vol.33 (3), p.807-873 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 873 |
---|---|
container_issue | 3 |
container_start_page | 807 |
container_title | Journal of the American Mathematical Society |
container_volume | 33 |
creator | Groechenig, Michael Wyss, Dimitri Ziegler, Paul |
description | In this article we give a new proof of Ngô's geometric stabilisation theorem, which implies the fundamental lemma. This is a statement which relates the cohomology of Hitchin fibres for a quasi-split reductive group scheme G to the cohomology of Hitchin fibres for the endoscopy groups H_{\kappa }. Our proof avoids the decomposition and support theorem, instead the argument is based on results for p-adic integration on coarse moduli spaces of Deligne-Mumford stacks. Along the way we establish a description of the inertia stack of the (anisotropic) moduli stack of G-Higgs bundles in terms of endoscopic data, and extend duality for generic Hitchin fibres of Langlands dual group schemes to the quasi-split case. |
doi_str_mv | 10.1090/jams/948 |
format | Article |
fullrecord | <record><control><sourceid>ams_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1090_jams_948</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1090_jams_948</sourcerecordid><originalsourceid>FETCH-LOGICAL-a2048-c5d211c2cf018e9ad403c31141e460f81da79b462e19ffd3b2316ffc713cc5233</originalsourceid><addsrcrecordid>eNp1j01LAzEURYMoOFbBnzDgxk3a95JMJllK0SoU3Og6ZPIhKZ1OSQbBf--MddvVhXsPFw4h9whLBA2rne3LSgt1QSoEpahUXFySCpQWFLhor8lNKTsAQNnIiiw3YejDmJOry2i7tE_Fjmk41N_J1kdq_TSkwxi-8l99S66i3Zdw958L8vny_LF-pdv3zdv6aUstA6GoazxDdMxFQBW09QK444gCg5AQFXrb6k5IFlDH6HnHOMoYXYvcuYZxviCPp1-Xh1JyiOaYU2_zj0Ews6eZPc3kOaEPJ3QuzlK_lKBRFg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Geometric stabilisation via p-adic integration</title><source>American Mathematical Society Publications</source><creator>Groechenig, Michael ; Wyss, Dimitri ; Ziegler, Paul</creator><creatorcontrib>Groechenig, Michael ; Wyss, Dimitri ; Ziegler, Paul</creatorcontrib><description>In this article we give a new proof of Ngô's geometric stabilisation theorem, which implies the fundamental lemma. This is a statement which relates the cohomology of Hitchin fibres for a quasi-split reductive group scheme G to the cohomology of Hitchin fibres for the endoscopy groups H_{\kappa }. Our proof avoids the decomposition and support theorem, instead the argument is based on results for p-adic integration on coarse moduli spaces of Deligne-Mumford stacks. Along the way we establish a description of the inertia stack of the (anisotropic) moduli stack of G-Higgs bundles in terms of endoscopic data, and extend duality for generic Hitchin fibres of Langlands dual group schemes to the quasi-split case.</description><identifier>ISSN: 0894-0347</identifier><identifier>EISSN: 1088-6834</identifier><identifier>DOI: 10.1090/jams/948</identifier><language>eng</language><ispartof>Journal of the American Mathematical Society, 2020-07, Vol.33 (3), p.807-873</ispartof><rights>Copyright 2020, American Mathematical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a2048-c5d211c2cf018e9ad403c31141e460f81da79b462e19ffd3b2316ffc713cc5233</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttp://www.ams.org/jams/2020-33-03/S0894-0347-2020-00948-1/S0894-0347-2020-00948-1.pdf$$EPDF$$P50$$Gams$$H</linktopdf><linktohtml>$$Uhttp://www.ams.org/jams/2020-33-03/S0894-0347-2020-00948-1/$$EHTML$$P50$$Gams$$H</linktohtml><link.rule.ids>68,314,780,784,23328,27924,27925,77836,77846</link.rule.ids></links><search><creatorcontrib>Groechenig, Michael</creatorcontrib><creatorcontrib>Wyss, Dimitri</creatorcontrib><creatorcontrib>Ziegler, Paul</creatorcontrib><title>Geometric stabilisation via p-adic integration</title><title>Journal of the American Mathematical Society</title><description>In this article we give a new proof of Ngô's geometric stabilisation theorem, which implies the fundamental lemma. This is a statement which relates the cohomology of Hitchin fibres for a quasi-split reductive group scheme G to the cohomology of Hitchin fibres for the endoscopy groups H_{\kappa }. Our proof avoids the decomposition and support theorem, instead the argument is based on results for p-adic integration on coarse moduli spaces of Deligne-Mumford stacks. Along the way we establish a description of the inertia stack of the (anisotropic) moduli stack of G-Higgs bundles in terms of endoscopic data, and extend duality for generic Hitchin fibres of Langlands dual group schemes to the quasi-split case.</description><issn>0894-0347</issn><issn>1088-6834</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1j01LAzEURYMoOFbBnzDgxk3a95JMJllK0SoU3Og6ZPIhKZ1OSQbBf--MddvVhXsPFw4h9whLBA2rne3LSgt1QSoEpahUXFySCpQWFLhor8lNKTsAQNnIiiw3YejDmJOry2i7tE_Fjmk41N_J1kdq_TSkwxi-8l99S66i3Zdw958L8vny_LF-pdv3zdv6aUstA6GoazxDdMxFQBW09QK444gCg5AQFXrb6k5IFlDH6HnHOMoYXYvcuYZxviCPp1-Xh1JyiOaYU2_zj0Ews6eZPc3kOaEPJ3QuzlK_lKBRFg</recordid><startdate>20200701</startdate><enddate>20200701</enddate><creator>Groechenig, Michael</creator><creator>Wyss, Dimitri</creator><creator>Ziegler, Paul</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20200701</creationdate><title>Geometric stabilisation via p-adic integration</title><author>Groechenig, Michael ; Wyss, Dimitri ; Ziegler, Paul</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a2048-c5d211c2cf018e9ad403c31141e460f81da79b462e19ffd3b2316ffc713cc5233</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Groechenig, Michael</creatorcontrib><creatorcontrib>Wyss, Dimitri</creatorcontrib><creatorcontrib>Ziegler, Paul</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of the American Mathematical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Groechenig, Michael</au><au>Wyss, Dimitri</au><au>Ziegler, Paul</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Geometric stabilisation via p-adic integration</atitle><jtitle>Journal of the American Mathematical Society</jtitle><date>2020-07-01</date><risdate>2020</risdate><volume>33</volume><issue>3</issue><spage>807</spage><epage>873</epage><pages>807-873</pages><issn>0894-0347</issn><eissn>1088-6834</eissn><abstract>In this article we give a new proof of Ngô's geometric stabilisation theorem, which implies the fundamental lemma. This is a statement which relates the cohomology of Hitchin fibres for a quasi-split reductive group scheme G to the cohomology of Hitchin fibres for the endoscopy groups H_{\kappa }. Our proof avoids the decomposition and support theorem, instead the argument is based on results for p-adic integration on coarse moduli spaces of Deligne-Mumford stacks. Along the way we establish a description of the inertia stack of the (anisotropic) moduli stack of G-Higgs bundles in terms of endoscopic data, and extend duality for generic Hitchin fibres of Langlands dual group schemes to the quasi-split case.</abstract><doi>10.1090/jams/948</doi><tpages>67</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0894-0347 |
ispartof | Journal of the American Mathematical Society, 2020-07, Vol.33 (3), p.807-873 |
issn | 0894-0347 1088-6834 |
language | eng |
recordid | cdi_crossref_primary_10_1090_jams_948 |
source | American Mathematical Society Publications |
title | Geometric stabilisation via p-adic integration |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T02%3A55%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ams_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Geometric%20stabilisation%20via%20p-adic%20integration&rft.jtitle=Journal%20of%20the%20American%20Mathematical%20Society&rft.au=Groechenig,%20Michael&rft.date=2020-07-01&rft.volume=33&rft.issue=3&rft.spage=807&rft.epage=873&rft.pages=807-873&rft.issn=0894-0347&rft.eissn=1088-6834&rft_id=info:doi/10.1090/jams/948&rft_dat=%3Cams_cross%3E10_1090_jams_948%3C/ams_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |