Geometric stabilisation via p-adic integration
In this article we give a new proof of Ngô's geometric stabilisation theorem, which implies the fundamental lemma. This is a statement which relates the cohomology of Hitchin fibres for a quasi-split reductive group scheme G to the cohomology of Hitchin fibres for the endoscopy groups H_{\kappa...
Gespeichert in:
Veröffentlicht in: | Journal of the American Mathematical Society 2020-07, Vol.33 (3), p.807-873 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this article we give a new proof of Ngô's geometric stabilisation theorem, which implies the fundamental lemma. This is a statement which relates the cohomology of Hitchin fibres for a quasi-split reductive group scheme G to the cohomology of Hitchin fibres for the endoscopy groups H_{\kappa }. Our proof avoids the decomposition and support theorem, instead the argument is based on results for p-adic integration on coarse moduli spaces of Deligne-Mumford stacks. Along the way we establish a description of the inertia stack of the (anisotropic) moduli stack of G-Higgs bundles in terms of endoscopic data, and extend duality for generic Hitchin fibres of Langlands dual group schemes to the quasi-split case. |
---|---|
ISSN: | 0894-0347 1088-6834 |
DOI: | 10.1090/jams/948 |