Geometric stabilisation via p-adic integration

In this article we give a new proof of Ngô's geometric stabilisation theorem, which implies the fundamental lemma. This is a statement which relates the cohomology of Hitchin fibres for a quasi-split reductive group scheme G to the cohomology of Hitchin fibres for the endoscopy groups H_{\kappa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Mathematical Society 2020-07, Vol.33 (3), p.807-873
Hauptverfasser: Groechenig, Michael, Wyss, Dimitri, Ziegler, Paul
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this article we give a new proof of Ngô's geometric stabilisation theorem, which implies the fundamental lemma. This is a statement which relates the cohomology of Hitchin fibres for a quasi-split reductive group scheme G to the cohomology of Hitchin fibres for the endoscopy groups H_{\kappa }. Our proof avoids the decomposition and support theorem, instead the argument is based on results for p-adic integration on coarse moduli spaces of Deligne-Mumford stacks. Along the way we establish a description of the inertia stack of the (anisotropic) moduli stack of G-Higgs bundles in terms of endoscopic data, and extend duality for generic Hitchin fibres of Langlands dual group schemes to the quasi-split case.
ISSN:0894-0347
1088-6834
DOI:10.1090/jams/948