Classification of the maximal subalgebras of exceptional Lie algebras over fields of good characteristic
Let G be an exceptional simple algebraic group over an algebraically closed field k and suppose that p={\operatorname {char}}(k) is a good prime for G. In this paper we classify the maximal Lie subalgebras \mathfrak{m} of the Lie algebra \mathfrak{g}=\operatorname {Lie}(G). Specifically, we show tha...
Gespeichert in:
Veröffentlicht in: | Journal of the American Mathematical Society 2019-10, Vol.32 (4), p.965-1008 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let G be an exceptional simple algebraic group over an algebraically closed field k and suppose that p={\operatorname {char}}(k) is a good prime for G. In this paper we classify the maximal Lie subalgebras \mathfrak{m} of the Lie algebra \mathfrak{g}=\operatorname {Lie}(G). Specifically, we show that either \mathfrak{m}=\operatorname {Lie}(M) for some maximal connected subgroup M of G, or \mathfrak{m} is a maximal Witt subalgebra of \mathfrak{g}, or \mathfrak{m} is a maximal exotic semidirect product . The conjugacy classes of maximal connected subgroups of G are known thanks to the work of Seitz, Testerman, and Liebeck-Seitz. All maximal Witt subalgebras of \mathfrak{g} are G-conjugate and they occur when G is not of type {\mathrm {E}}_6 and p-1 coincides with the Coxeter number of G. We show that there are two conjugacy classes of maximal exotic semidirect products in \mathfrak{g}, one in characteristic 5 and one in characteristic 7, and both occur when G is a group of type {\mathrm {E}}_7. |
---|---|
ISSN: | 0894-0347 1088-6834 |
DOI: | 10.1090/jams/926 |