Monoidal categorification of cluster algebras

We prove that the quantum cluster algebra structure of a unipotent quantum coordinate ring A_q(\mathfrak{n}(w)), associated with a symmetric Kac–Moody algebra and its Weyl group element w, admits a monoidal categorification via the representations of symmetric Khovanov–Lauda–Rouquier algebras. In or...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Mathematical Society 2018-04, Vol.31 (2), p.349-426
Hauptverfasser: Kang, Seok-Jin, Kashiwara, Masaki, Kim, Myungho, Oh, Se-jin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 426
container_issue 2
container_start_page 349
container_title Journal of the American Mathematical Society
container_volume 31
creator Kang, Seok-Jin
Kashiwara, Masaki
Kim, Myungho
Oh, Se-jin
description We prove that the quantum cluster algebra structure of a unipotent quantum coordinate ring A_q(\mathfrak{n}(w)), associated with a symmetric Kac–Moody algebra and its Weyl group element w, admits a monoidal categorification via the representations of symmetric Khovanov–Lauda–Rouquier algebras. In order to achieve this goal, we give a formulation of monoidal categorifications of quantum cluster algebras and provide a criterion for a monoidal category of finite-dimensional graded R-modules to become a monoidal categorification, where R is a symmetric Khovanov–Lauda–Rouquier algebra. Roughly speaking, this criterion asserts that a quantum monoidal seed can be mutated successively in all the directions, once the first-step mutations are possible. Then, we show the existence of a quantum monoidal seed of A_q(\mathfrak{n}(w)) which admits the first-step mutations in all the directions. As a consequence, we prove the conjecture that any cluster monomial is a member of the upper global basis up to a power of q^{1/2}. In the course of our investigation, we also give a proof of a conjecture of Leclerc on the product of upper global basis elements.
doi_str_mv 10.1090/jams/895
format Article
fullrecord <record><control><sourceid>jstor_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1090_jams_895</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>90018726</jstor_id><sourcerecordid>90018726</sourcerecordid><originalsourceid>FETCH-LOGICAL-a377t-4f939c939eb51ef6421eb401e12b2a3103d00388fa84d6b7245c883c1d2e1ead3</originalsourceid><addsrcrecordid>eNp1j8FKxDAQhoMoWFfBFxAKXrzEnUnSNDnK4qqw4kXPJU2TpaW7kaQefHtTKt48DDPwf_PDR8g1wj2ChvVgDmmtdHVCCgSlqFRcnJIClBYUuKjPyUVKAwCgrGRB6Gs4hr4zY2nN5PYh9r7PVx-OZfClHb_S5GJpxr1ro0mX5MybMbmr370iH9vH980z3b09vWwedtTwup6o8Jprm8e1FTovBUPXCkCHrGWGI_AOgCvljRKdbGsmKqsUt9gxh850fEXull4bQ0rR-eYz9gcTvxuEZtZsZs0ma2b0ZkGHNIX4x-ksqGomc3675PPDvy0_Dp9agA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Monoidal categorification of cluster algebras</title><source>Jstor Complete Legacy</source><source>American Mathematical Society Publications</source><source>American Mathematical Society Publications (Freely Accessible)</source><source>Alma/SFX Local Collection</source><source>JSTOR Mathematics &amp; Statistics</source><creator>Kang, Seok-Jin ; Kashiwara, Masaki ; Kim, Myungho ; Oh, Se-jin</creator><creatorcontrib>Kang, Seok-Jin ; Kashiwara, Masaki ; Kim, Myungho ; Oh, Se-jin</creatorcontrib><description>We prove that the quantum cluster algebra structure of a unipotent quantum coordinate ring A_q(\mathfrak{n}(w)), associated with a symmetric Kac–Moody algebra and its Weyl group element w, admits a monoidal categorification via the representations of symmetric Khovanov–Lauda–Rouquier algebras. In order to achieve this goal, we give a formulation of monoidal categorifications of quantum cluster algebras and provide a criterion for a monoidal category of finite-dimensional graded R-modules to become a monoidal categorification, where R is a symmetric Khovanov–Lauda–Rouquier algebra. Roughly speaking, this criterion asserts that a quantum monoidal seed can be mutated successively in all the directions, once the first-step mutations are possible. Then, we show the existence of a quantum monoidal seed of A_q(\mathfrak{n}(w)) which admits the first-step mutations in all the directions. As a consequence, we prove the conjecture that any cluster monomial is a member of the upper global basis up to a power of q^{1/2}. In the course of our investigation, we also give a proof of a conjecture of Leclerc on the product of upper global basis elements.</description><identifier>ISSN: 0894-0347</identifier><identifier>EISSN: 1088-6834</identifier><identifier>DOI: 10.1090/jams/895</identifier><language>eng</language><publisher>Providence, Rhode Island: American Mathematical Society</publisher><subject>Research article</subject><ispartof>Journal of the American Mathematical Society, 2018-04, Vol.31 (2), p.349-426</ispartof><rights>Copyright 2017 American Mathematical Society</rights><rights>2018 by the American Mathematical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a377t-4f939c939eb51ef6421eb401e12b2a3103d00388fa84d6b7245c883c1d2e1ead3</citedby><cites>FETCH-LOGICAL-a377t-4f939c939eb51ef6421eb401e12b2a3103d00388fa84d6b7245c883c1d2e1ead3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ams.org/jams/2018-31-02/S0894-0347-2017-00895-6/S0894-0347-2017-00895-6.pdf$$EPDF$$P50$$Gams$$H</linktopdf><linktohtml>$$Uhttps://www.ams.org/jams/2018-31-02/S0894-0347-2017-00895-6/$$EHTML$$P50$$Gams$$H</linktohtml><link.rule.ids>68,69,314,776,780,799,828,23303,23307,27901,27902,57992,57996,58225,58229,77579,77581,77589,77591</link.rule.ids></links><search><creatorcontrib>Kang, Seok-Jin</creatorcontrib><creatorcontrib>Kashiwara, Masaki</creatorcontrib><creatorcontrib>Kim, Myungho</creatorcontrib><creatorcontrib>Oh, Se-jin</creatorcontrib><title>Monoidal categorification of cluster algebras</title><title>Journal of the American Mathematical Society</title><addtitle>J. Amer. Math. Soc</addtitle><description>We prove that the quantum cluster algebra structure of a unipotent quantum coordinate ring A_q(\mathfrak{n}(w)), associated with a symmetric Kac–Moody algebra and its Weyl group element w, admits a monoidal categorification via the representations of symmetric Khovanov–Lauda–Rouquier algebras. In order to achieve this goal, we give a formulation of monoidal categorifications of quantum cluster algebras and provide a criterion for a monoidal category of finite-dimensional graded R-modules to become a monoidal categorification, where R is a symmetric Khovanov–Lauda–Rouquier algebra. Roughly speaking, this criterion asserts that a quantum monoidal seed can be mutated successively in all the directions, once the first-step mutations are possible. Then, we show the existence of a quantum monoidal seed of A_q(\mathfrak{n}(w)) which admits the first-step mutations in all the directions. As a consequence, we prove the conjecture that any cluster monomial is a member of the upper global basis up to a power of q^{1/2}. In the course of our investigation, we also give a proof of a conjecture of Leclerc on the product of upper global basis elements.</description><subject>Research article</subject><issn>0894-0347</issn><issn>1088-6834</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1j8FKxDAQhoMoWFfBFxAKXrzEnUnSNDnK4qqw4kXPJU2TpaW7kaQefHtTKt48DDPwf_PDR8g1wj2ChvVgDmmtdHVCCgSlqFRcnJIClBYUuKjPyUVKAwCgrGRB6Gs4hr4zY2nN5PYh9r7PVx-OZfClHb_S5GJpxr1ro0mX5MybMbmr370iH9vH980z3b09vWwedtTwup6o8Jprm8e1FTovBUPXCkCHrGWGI_AOgCvljRKdbGsmKqsUt9gxh850fEXull4bQ0rR-eYz9gcTvxuEZtZsZs0ma2b0ZkGHNIX4x-ksqGomc3675PPDvy0_Dp9agA</recordid><startdate>20180401</startdate><enddate>20180401</enddate><creator>Kang, Seok-Jin</creator><creator>Kashiwara, Masaki</creator><creator>Kim, Myungho</creator><creator>Oh, Se-jin</creator><general>American Mathematical Society</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20180401</creationdate><title>Monoidal categorification of cluster algebras</title><author>Kang, Seok-Jin ; Kashiwara, Masaki ; Kim, Myungho ; Oh, Se-jin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a377t-4f939c939eb51ef6421eb401e12b2a3103d00388fa84d6b7245c883c1d2e1ead3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Research article</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kang, Seok-Jin</creatorcontrib><creatorcontrib>Kashiwara, Masaki</creatorcontrib><creatorcontrib>Kim, Myungho</creatorcontrib><creatorcontrib>Oh, Se-jin</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of the American Mathematical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kang, Seok-Jin</au><au>Kashiwara, Masaki</au><au>Kim, Myungho</au><au>Oh, Se-jin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Monoidal categorification of cluster algebras</atitle><jtitle>Journal of the American Mathematical Society</jtitle><stitle>J. Amer. Math. Soc</stitle><date>2018-04-01</date><risdate>2018</risdate><volume>31</volume><issue>2</issue><spage>349</spage><epage>426</epage><pages>349-426</pages><issn>0894-0347</issn><eissn>1088-6834</eissn><abstract>We prove that the quantum cluster algebra structure of a unipotent quantum coordinate ring A_q(\mathfrak{n}(w)), associated with a symmetric Kac–Moody algebra and its Weyl group element w, admits a monoidal categorification via the representations of symmetric Khovanov–Lauda–Rouquier algebras. In order to achieve this goal, we give a formulation of monoidal categorifications of quantum cluster algebras and provide a criterion for a monoidal category of finite-dimensional graded R-modules to become a monoidal categorification, where R is a symmetric Khovanov–Lauda–Rouquier algebra. Roughly speaking, this criterion asserts that a quantum monoidal seed can be mutated successively in all the directions, once the first-step mutations are possible. Then, we show the existence of a quantum monoidal seed of A_q(\mathfrak{n}(w)) which admits the first-step mutations in all the directions. As a consequence, we prove the conjecture that any cluster monomial is a member of the upper global basis up to a power of q^{1/2}. In the course of our investigation, we also give a proof of a conjecture of Leclerc on the product of upper global basis elements.</abstract><cop>Providence, Rhode Island</cop><pub>American Mathematical Society</pub><doi>10.1090/jams/895</doi><tpages>78</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0894-0347
ispartof Journal of the American Mathematical Society, 2018-04, Vol.31 (2), p.349-426
issn 0894-0347
1088-6834
language eng
recordid cdi_crossref_primary_10_1090_jams_895
source Jstor Complete Legacy; American Mathematical Society Publications; American Mathematical Society Publications (Freely Accessible); Alma/SFX Local Collection; JSTOR Mathematics & Statistics
subjects Research article
title Monoidal categorification of cluster algebras
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T05%3A34%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Monoidal%20categorification%20of%20cluster%20algebras&rft.jtitle=Journal%20of%20the%20American%20Mathematical%20Society&rft.au=Kang,%20Seok-Jin&rft.date=2018-04-01&rft.volume=31&rft.issue=2&rft.spage=349&rft.epage=426&rft.pages=349-426&rft.issn=0894-0347&rft.eissn=1088-6834&rft_id=info:doi/10.1090/jams/895&rft_dat=%3Cjstor_cross%3E90018726%3C/jstor_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=90018726&rfr_iscdi=true