Monoidal categorification of cluster algebras

We prove that the quantum cluster algebra structure of a unipotent quantum coordinate ring A_q(\mathfrak{n}(w)), associated with a symmetric Kac–Moody algebra and its Weyl group element w, admits a monoidal categorification via the representations of symmetric Khovanov–Lauda–Rouquier algebras. In or...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Mathematical Society 2018-04, Vol.31 (2), p.349-426
Hauptverfasser: Kang, Seok-Jin, Kashiwara, Masaki, Kim, Myungho, Oh, Se-jin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We prove that the quantum cluster algebra structure of a unipotent quantum coordinate ring A_q(\mathfrak{n}(w)), associated with a symmetric Kac–Moody algebra and its Weyl group element w, admits a monoidal categorification via the representations of symmetric Khovanov–Lauda–Rouquier algebras. In order to achieve this goal, we give a formulation of monoidal categorifications of quantum cluster algebras and provide a criterion for a monoidal category of finite-dimensional graded R-modules to become a monoidal categorification, where R is a symmetric Khovanov–Lauda–Rouquier algebra. Roughly speaking, this criterion asserts that a quantum monoidal seed can be mutated successively in all the directions, once the first-step mutations are possible. Then, we show the existence of a quantum monoidal seed of A_q(\mathfrak{n}(w)) which admits the first-step mutations in all the directions. As a consequence, we prove the conjecture that any cluster monomial is a member of the upper global basis up to a power of q^{1/2}. In the course of our investigation, we also give a proof of a conjecture of Leclerc on the product of upper global basis elements.
ISSN:0894-0347
1088-6834
DOI:10.1090/jams/895