Homological stability for moduli spaces of high dimensional manifolds. I

We prove a homological stability theorem for moduli spaces of simply connected manifolds of dimension 2n > 4, with respect to forming connected sum with S^n \times S^n. This is analogous to Harer's stability theorem for the homology of mapping class groups. Combined with previous work of the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Mathematical Society 2018-01, Vol.31 (1), p.215-264
Hauptverfasser: Søren Galatius, Oscar Randal-Williams
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We prove a homological stability theorem for moduli spaces of simply connected manifolds of dimension 2n > 4, with respect to forming connected sum with S^n \times S^n. This is analogous to Harer's stability theorem for the homology of mapping class groups. Combined with previous work of the authors, it gives a calculation of the homology of the moduli spaces of manifolds diffeomorphic to connected sums of S^n \times S^n in a range of degrees.
ISSN:0894-0347
1088-6834
DOI:10.1090/jams/884