Infinite sumsets in sets with positive density

Motivated by questions asked by Erdős, we prove that any set A ⊂ N A\subset \mathbb {N} with positive upper density contains, for any k ∈ N k\in \mathbb {N} , a sumset B 1 + ⋯ + B k B_1+\cdots +B_k , where B 1 B_1 , …, B k ⊂ N B_k\subset \mathbb {N} are infinite. Our proof uses ergodic theory and re...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Mathematical Society 2024-07, Vol.37 (3), p.637-682
Hauptverfasser: Kra, Bryna, Moreira, Joel, Richter, Florian, Robertson, Donald
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 682
container_issue 3
container_start_page 637
container_title Journal of the American Mathematical Society
container_volume 37
creator Kra, Bryna
Moreira, Joel
Richter, Florian
Robertson, Donald
description Motivated by questions asked by Erdős, we prove that any set A ⊂ N A\subset \mathbb {N} with positive upper density contains, for any k ∈ N k\in \mathbb {N} , a sumset B 1 + ⋯ + B k B_1+\cdots +B_k , where B 1 B_1 , …, B k ⊂ N B_k\subset \mathbb {N} are infinite. Our proof uses ergodic theory and relies on structural results for measure preserving systems. Our techniques are new, even for the previously known case of k = 2 k=2 .
doi_str_mv 10.1090/jams/1030
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1090_jams_1030</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1090_jams_1030</sourcerecordid><originalsourceid>FETCH-LOGICAL-c159t-801bf8728ac287a5e84618c092f89e94fc2e8b54a72a4228316dab0fc0b8648e3</originalsourceid><addsrcrecordid>eNotzz1PwzAUhWELUYnQMvAPsjK4vf6Icz2iio9KlVhgthz3WrgiaRUbUP89BDq9ZzrSw9itgKUAC6u97_NKgIILVglA5AaVvmQVoNUclG6v2HXOewAQpjEVW26GmIZUqM6ffaaS6zTUf_1O5b0-HnIq6YvqHQ2_67Rgs-g_Mt2cO2dvjw-v62e-fXnarO-3PIjGFo4guoitRB8ktr4h1EZgACsjWrI6BknYNdq30mspUQmz8x3EAB0ajaTm7O7_N4yHnEeK7jim3o8nJ8BNUDdB3QRVP-6ZRf4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Infinite sumsets in sets with positive density</title><source>American Mathematical Society Publications</source><creator>Kra, Bryna ; Moreira, Joel ; Richter, Florian ; Robertson, Donald</creator><creatorcontrib>Kra, Bryna ; Moreira, Joel ; Richter, Florian ; Robertson, Donald</creatorcontrib><description>Motivated by questions asked by Erdős, we prove that any set A ⊂ N A\subset \mathbb {N} with positive upper density contains, for any k ∈ N k\in \mathbb {N} , a sumset B 1 + ⋯ + B k B_1+\cdots +B_k , where B 1 B_1 , …, B k ⊂ N B_k\subset \mathbb {N} are infinite. Our proof uses ergodic theory and relies on structural results for measure preserving systems. Our techniques are new, even for the previously known case of k = 2 k=2 .</description><identifier>ISSN: 0894-0347</identifier><identifier>EISSN: 1088-6834</identifier><identifier>DOI: 10.1090/jams/1030</identifier><language>eng</language><ispartof>Journal of the American Mathematical Society, 2024-07, Vol.37 (3), p.637-682</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c159t-801bf8728ac287a5e84618c092f89e94fc2e8b54a72a4228316dab0fc0b8648e3</citedby><cites>FETCH-LOGICAL-c159t-801bf8728ac287a5e84618c092f89e94fc2e8b54a72a4228316dab0fc0b8648e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Kra, Bryna</creatorcontrib><creatorcontrib>Moreira, Joel</creatorcontrib><creatorcontrib>Richter, Florian</creatorcontrib><creatorcontrib>Robertson, Donald</creatorcontrib><title>Infinite sumsets in sets with positive density</title><title>Journal of the American Mathematical Society</title><description>Motivated by questions asked by Erdős, we prove that any set A ⊂ N A\subset \mathbb {N} with positive upper density contains, for any k ∈ N k\in \mathbb {N} , a sumset B 1 + ⋯ + B k B_1+\cdots +B_k , where B 1 B_1 , …, B k ⊂ N B_k\subset \mathbb {N} are infinite. Our proof uses ergodic theory and relies on structural results for measure preserving systems. Our techniques are new, even for the previously known case of k = 2 k=2 .</description><issn>0894-0347</issn><issn>1088-6834</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNotzz1PwzAUhWELUYnQMvAPsjK4vf6Icz2iio9KlVhgthz3WrgiaRUbUP89BDq9ZzrSw9itgKUAC6u97_NKgIILVglA5AaVvmQVoNUclG6v2HXOewAQpjEVW26GmIZUqM6ffaaS6zTUf_1O5b0-HnIq6YvqHQ2_67Rgs-g_Mt2cO2dvjw-v62e-fXnarO-3PIjGFo4guoitRB8ktr4h1EZgACsjWrI6BknYNdq30mspUQmz8x3EAB0ajaTm7O7_N4yHnEeK7jim3o8nJ8BNUDdB3QRVP-6ZRf4</recordid><startdate>202407</startdate><enddate>202407</enddate><creator>Kra, Bryna</creator><creator>Moreira, Joel</creator><creator>Richter, Florian</creator><creator>Robertson, Donald</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>202407</creationdate><title>Infinite sumsets in sets with positive density</title><author>Kra, Bryna ; Moreira, Joel ; Richter, Florian ; Robertson, Donald</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c159t-801bf8728ac287a5e84618c092f89e94fc2e8b54a72a4228316dab0fc0b8648e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kra, Bryna</creatorcontrib><creatorcontrib>Moreira, Joel</creatorcontrib><creatorcontrib>Richter, Florian</creatorcontrib><creatorcontrib>Robertson, Donald</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of the American Mathematical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kra, Bryna</au><au>Moreira, Joel</au><au>Richter, Florian</au><au>Robertson, Donald</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Infinite sumsets in sets with positive density</atitle><jtitle>Journal of the American Mathematical Society</jtitle><date>2024-07</date><risdate>2024</risdate><volume>37</volume><issue>3</issue><spage>637</spage><epage>682</epage><pages>637-682</pages><issn>0894-0347</issn><eissn>1088-6834</eissn><abstract>Motivated by questions asked by Erdős, we prove that any set A ⊂ N A\subset \mathbb {N} with positive upper density contains, for any k ∈ N k\in \mathbb {N} , a sumset B 1 + ⋯ + B k B_1+\cdots +B_k , where B 1 B_1 , …, B k ⊂ N B_k\subset \mathbb {N} are infinite. Our proof uses ergodic theory and relies on structural results for measure preserving systems. Our techniques are new, even for the previously known case of k = 2 k=2 .</abstract><doi>10.1090/jams/1030</doi><tpages>46</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0894-0347
ispartof Journal of the American Mathematical Society, 2024-07, Vol.37 (3), p.637-682
issn 0894-0347
1088-6834
language eng
recordid cdi_crossref_primary_10_1090_jams_1030
source American Mathematical Society Publications
title Infinite sumsets in sets with positive density
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T22%3A48%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Infinite%20sumsets%20in%20sets%20with%20positive%20density&rft.jtitle=Journal%20of%20the%20American%20Mathematical%20Society&rft.au=Kra,%20Bryna&rft.date=2024-07&rft.volume=37&rft.issue=3&rft.spage=637&rft.epage=682&rft.pages=637-682&rft.issn=0894-0347&rft.eissn=1088-6834&rft_id=info:doi/10.1090/jams/1030&rft_dat=%3Ccrossref%3E10_1090_jams_1030%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true