Infinite sumsets in sets with positive density
Motivated by questions asked by Erdős, we prove that any set A ⊂ N A\subset \mathbb {N} with positive upper density contains, for any k ∈ N k\in \mathbb {N} , a sumset B 1 + ⋯ + B k B_1+\cdots +B_k , where B 1 B_1 , …, B k ⊂ N B_k\subset \mathbb {N} are infinite. Our proof uses ergodic theory and re...
Gespeichert in:
Veröffentlicht in: | Journal of the American Mathematical Society 2024-07, Vol.37 (3), p.637-682 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Motivated by questions asked by Erdős, we prove that any set
A
⊂
N
A\subset \mathbb {N}
with positive upper density contains, for any
k
∈
N
k\in \mathbb {N}
, a sumset
B
1
+
⋯
+
B
k
B_1+\cdots +B_k
, where
B
1
B_1
, …,
B
k
⊂
N
B_k\subset \mathbb {N}
are infinite. Our proof uses ergodic theory and relies on structural results for measure preserving systems. Our techniques are new, even for the previously known case of
k
=
2
k=2
. |
---|---|
ISSN: | 0894-0347 1088-6834 |
DOI: | 10.1090/jams/1030 |