Infinite sumsets in sets with positive density

Motivated by questions asked by Erdős, we prove that any set A ⊂ N A\subset \mathbb {N} with positive upper density contains, for any k ∈ N k\in \mathbb {N} , a sumset B 1 + ⋯ + B k B_1+\cdots +B_k , where B 1 B_1 , …, B k ⊂ N B_k\subset \mathbb {N} are infinite. Our proof uses ergodic theory and re...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Mathematical Society 2024-07, Vol.37 (3), p.637-682
Hauptverfasser: Kra, Bryna, Moreira, Joel, Richter, Florian, Robertson, Donald
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Motivated by questions asked by Erdős, we prove that any set A ⊂ N A\subset \mathbb {N} with positive upper density contains, for any k ∈ N k\in \mathbb {N} , a sumset B 1 + ⋯ + B k B_1+\cdots +B_k , where B 1 B_1 , …, B k ⊂ N B_k\subset \mathbb {N} are infinite. Our proof uses ergodic theory and relies on structural results for measure preserving systems. Our techniques are new, even for the previously known case of k = 2 k=2 .
ISSN:0894-0347
1088-6834
DOI:10.1090/jams/1030