Non-compact Einstein manifolds with symmetry
For Einstein manifolds with negative scalar curvature admitting an isometric action of a Lie group \mathsf {G} with compact, smooth orbit space, we show that the nilradical \mathsf {N} of \mathsf {G} acts polarly and that the \mathsf {N}-orbits can be extended to minimal Einstein submanifolds. As an...
Gespeichert in:
Veröffentlicht in: | Journal of the American Mathematical Society 2023-07, Vol.36 (3), p.591-651 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | For Einstein manifolds with negative scalar curvature admitting an isometric action of a Lie group \mathsf {G} with compact, smooth orbit space, we show that the nilradical \mathsf {N} of \mathsf {G} acts polarly and that the \mathsf {N}-orbits can be extended to minimal Einstein submanifolds. As an application, we prove the Alekseevskii conjecture: Any homogeneous Einstein manifold with negative scalar curvature is diffeomorphic to a Euclidean space. |
---|---|
ISSN: | 0894-0347 1088-6834 |
DOI: | 10.1090/jams/1022 |