Non-compact Einstein manifolds with symmetry

For Einstein manifolds with negative scalar curvature admitting an isometric action of a Lie group \mathsf {G} with compact, smooth orbit space, we show that the nilradical \mathsf {N} of \mathsf {G} acts polarly and that the \mathsf {N}-orbits can be extended to minimal Einstein submanifolds. As an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Mathematical Society 2023-07, Vol.36 (3), p.591-651
Hauptverfasser: Böhm, Christoph, Lafuente, Ramiro
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:For Einstein manifolds with negative scalar curvature admitting an isometric action of a Lie group \mathsf {G} with compact, smooth orbit space, we show that the nilradical \mathsf {N} of \mathsf {G} acts polarly and that the \mathsf {N}-orbits can be extended to minimal Einstein submanifolds. As an application, we prove the Alekseevskii conjecture: Any homogeneous Einstein manifold with negative scalar curvature is diffeomorphic to a Euclidean space.
ISSN:0894-0347
1088-6834
DOI:10.1090/jams/1022