A restriction estimate using polynomial partitioning

If S \mathbb{R}^3 is the corresponding extension operator, then we prove that for all p > 3.25 . The proof uses polynomial partitioning arguments from incidence geometry.

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Mathematical Society 2016-04, Vol.29 (2), p.371-413
1. Verfasser: Guth, Larry
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 413
container_issue 2
container_start_page 371
container_title Journal of the American Mathematical Society
container_volume 29
creator Guth, Larry
description If S \mathbb{R}^3 is the corresponding extension operator, then we prove that for all p > 3.25 . The proof uses polynomial partitioning arguments from incidence geometry.
doi_str_mv 10.1090/jams827
format Article
fullrecord <record><control><sourceid>jstor_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1090_jams827</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>jamermathsoci.29.2.371</jstor_id><sourcerecordid>jamermathsoci.29.2.371</sourcerecordid><originalsourceid>FETCH-LOGICAL-a387t-95a4fa30a7376ac835ae0842d566b280300954d30a2409f0f61081f01401f20d3</originalsourceid><addsrcrecordid>eNp1j0tLxDAUhYMoWEfxLxQ3LqR682gey2HwBQNudB1im2iGtilJXMy_N0MHd67u5Z7vHs5B6BrDPQYFDzszJknECaowSNlwSdkpqkAq1gBl4hxdpLQDAMxbXiG2rqNNOfou-zDVZfWjybb-SX76qucw7KcwejPUs4nZH5hyv0RnzgzJXh3nCn08Pb5vXprt2_PrZr1tDJUiN6o1zBkKRlDBTSdpayxIRvqW808igQKolvUFIAyUA8dLYuwAM8COQE9X6Hbx7WJIKVqn51jixb3GoA9l9bFsIe8WcpdyiH9YkW0sfb5T6LwmShNNBS70zUKX738tfwFvCmGL</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A restriction estimate using polynomial partitioning</title><source>American Mathematical Society Publications (Freely Accessible)</source><source>JSTOR Mathematics &amp; Statistics</source><source>JSTOR Archive Collection A-Z Listing</source><source>American Mathematical Society Publications</source><source>Alma/SFX Local Collection</source><creator>Guth, Larry</creator><creatorcontrib>Guth, Larry</creatorcontrib><description>If S \mathbb{R}^3 is the corresponding extension operator, then we prove that for all p &gt; 3.25 . The proof uses polynomial partitioning arguments from incidence geometry.</description><identifier>ISSN: 0894-0347</identifier><identifier>EISSN: 1088-6834</identifier><identifier>DOI: 10.1090/jams827</identifier><language>eng</language><publisher>American Mathematical Society</publisher><ispartof>Journal of the American Mathematical Society, 2016-04, Vol.29 (2), p.371-413</ispartof><rights>Copyright 2015, American Mathematical Society</rights><rights>2016 American Mathematical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a387t-95a4fa30a7376ac835ae0842d566b280300954d30a2409f0f61081f01401f20d3</citedby><cites>FETCH-LOGICAL-a387t-95a4fa30a7376ac835ae0842d566b280300954d30a2409f0f61081f01401f20d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttp://www.ams.org/jams/2016-29-02/S0894-0347-2015-00827-X/S0894-0347-2015-00827-X.pdf$$EPDF$$P50$$Gams$$H</linktopdf><linktohtml>$$Uhttp://www.ams.org/jams/2016-29-02/S0894-0347-2015-00827-X/$$EHTML$$P50$$Gams$$H</linktohtml><link.rule.ids>68,69,314,780,784,803,832,23324,23328,27924,27925,58017,58021,58250,58254,77836,77838,77846,77848</link.rule.ids></links><search><creatorcontrib>Guth, Larry</creatorcontrib><title>A restriction estimate using polynomial partitioning</title><title>Journal of the American Mathematical Society</title><description>If S \mathbb{R}^3 is the corresponding extension operator, then we prove that for all p &gt; 3.25 . The proof uses polynomial partitioning arguments from incidence geometry.</description><issn>0894-0347</issn><issn>1088-6834</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp1j0tLxDAUhYMoWEfxLxQ3LqR682gey2HwBQNudB1im2iGtilJXMy_N0MHd67u5Z7vHs5B6BrDPQYFDzszJknECaowSNlwSdkpqkAq1gBl4hxdpLQDAMxbXiG2rqNNOfou-zDVZfWjybb-SX76qucw7KcwejPUs4nZH5hyv0RnzgzJXh3nCn08Pb5vXprt2_PrZr1tDJUiN6o1zBkKRlDBTSdpayxIRvqW808igQKolvUFIAyUA8dLYuwAM8COQE9X6Hbx7WJIKVqn51jixb3GoA9l9bFsIe8WcpdyiH9YkW0sfb5T6LwmShNNBS70zUKX738tfwFvCmGL</recordid><startdate>20160401</startdate><enddate>20160401</enddate><creator>Guth, Larry</creator><general>American Mathematical Society</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20160401</creationdate><title>A restriction estimate using polynomial partitioning</title><author>Guth, Larry</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a387t-95a4fa30a7376ac835ae0842d566b280300954d30a2409f0f61081f01401f20d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guth, Larry</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of the American Mathematical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guth, Larry</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A restriction estimate using polynomial partitioning</atitle><jtitle>Journal of the American Mathematical Society</jtitle><date>2016-04-01</date><risdate>2016</risdate><volume>29</volume><issue>2</issue><spage>371</spage><epage>413</epage><pages>371-413</pages><issn>0894-0347</issn><eissn>1088-6834</eissn><abstract>If S \mathbb{R}^3 is the corresponding extension operator, then we prove that for all p &gt; 3.25 . The proof uses polynomial partitioning arguments from incidence geometry.</abstract><pub>American Mathematical Society</pub><doi>10.1090/jams827</doi><tpages>43</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0894-0347
ispartof Journal of the American Mathematical Society, 2016-04, Vol.29 (2), p.371-413
issn 0894-0347
1088-6834
language eng
recordid cdi_crossref_primary_10_1090_jams827
source American Mathematical Society Publications (Freely Accessible); JSTOR Mathematics & Statistics; JSTOR Archive Collection A-Z Listing; American Mathematical Society Publications; Alma/SFX Local Collection
title A restriction estimate using polynomial partitioning
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T23%3A53%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20restriction%20estimate%20using%20polynomial%20partitioning&rft.jtitle=Journal%20of%20the%20American%20Mathematical%20Society&rft.au=Guth,%20Larry&rft.date=2016-04-01&rft.volume=29&rft.issue=2&rft.spage=371&rft.epage=413&rft.pages=371-413&rft.issn=0894-0347&rft.eissn=1088-6834&rft_id=info:doi/10.1090/jams827&rft_dat=%3Cjstor_cross%3Ejamermathsoci.29.2.371%3C/jstor_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=jamermathsoci.29.2.371&rfr_iscdi=true