Scattering diagrams, stability conditions, and coherent sheaves on ℙ
We show that a purely algebraic structure, a two-dimensional scattering diagram, describes a large part of the wall-crossing behavior of moduli spaces of Bridgeland semistable objects in the derived category of coherent sheaves on P 2 \mathbb {P}^2 . This gives a new algorithm computing the Hodge nu...
Gespeichert in:
Veröffentlicht in: | Journal of algebraic geometry 2022-10, Vol.31 (4), p.593-686 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We show that a purely algebraic structure, a two-dimensional scattering diagram, describes a large part of the wall-crossing behavior of moduli spaces of Bridgeland semistable objects in the derived category of coherent sheaves on
P
2
\mathbb {P}^2
. This gives a new algorithm computing the Hodge numbers of the intersection cohomology of the classical moduli spaces of Gieseker semistable sheaves on
P
2
\mathbb {P}^2
, or equivalently the refined Donaldson-Thomas invariants for compactly supported sheaves on local
P
2
\mathbb {P}^2
.
As applications, we prove that the intersection cohomology of moduli spaces of Gieseker semistable sheaves on
P
2
\mathbb {P}^2
is Hodge-Tate, and we give the first non-trivial numerical checks of the general
χ
\chi
-independence conjecture for refined Donaldson-Thomas invariants of one-dimensional sheaves on local
P
2
\mathbb {P}^2
. |
---|---|
ISSN: | 1056-3911 1534-7486 |
DOI: | 10.1090/jag/795 |